Abstract: Thanks to the excellent high-temperature mechanical properties and the good resistance to hot corrosion, Inconel 718 superalloy is widely used in aerospace, gas turbines, nuclear power and fossil fields. Recently, laser additive manufacturing (LAM) technique, with the characteristics of design freedom and near net shaping, shows great potential applications in the fabrication of complex and precise Inconel 718 components. Owing to the rapid heating and cooling process of LAM, the size of dendrite/cell and precipitates is much finer than that fabricated by traditional methods. Moreover, the resulted hierarchically heterogeneous microstructure shows unique correlation with mechanical properties. With extensive research on the LAM of Inconel 718 superalloy, the mechanical properties can reach or even exceed the as-forged counterparts. Ho-wever, significant solidification texture and large residual tensile stresses in the Inconel 718 superalloys fabricated by LAM give rise to anisotropic mechanical properties and poor fatigue durability, which limits LAM technique to a large certain extent. To this end, the application of LAM technology needs to start from the perspective of multi-scale microstructure, through processing control and post-processing treatment, to achieve high-quality the Inconel 718 superalloys fabricated by LAM. In this article, the research progress of laser selective melting and laser solid forming technology in the fabrication of Inconel 718 superalloy is summarized by focusing on the relationship of process parameters, microstructures and mechanical properties. The effect of LAM methods and processing parameters on the microstructures (such as dendrite growth, precipitates, grain structure and residual stresses) and the mechanical properties are highlighted. In addition, the solutions to the difficulties of the Inconel 718 superalloys fabricated by LAM are discussed.
1 Wang X, Gong X, Chou K. Proceedings of the Institution of Mechanical Engineers Part B, 2017, 231 (11), 1890. 2 DebRoy T, Wei H L, Zuback J S. Progress in Materials Science, 2018, 92, 112. 3 Liu F, Lin X, Huang C, et al. Journal of Alloys and Compounds, 2011, 509 (13), 4505. 4 Wei C, Gu H, Sun Z, et al. Additive Manufacturing, 2019, 29, 100818. 5 Frazier W E. Journal of Materials Engineering and Performance, 2014, 23 (6), 1917. 6 Hosseini E, Popovich V A. Additive Manufacturing, 2019, 30, 100877. 7 Jia Q, Gu D. Journal of Alloys and Compounds, 2014, 585, 713. 8 Sui S, Chen J, Zhang R, et al. Materials Science and Engineering A, 2017, 688 (2), 480. 9 Li Z L. Compositional variation in Inconel 718 alloy fabricated by selective laser melting. Master's Thesis, Harbin Institute of Technology, China, 2016 (in Chinese) . 李珠玲. 选区激光熔化IN718合金的成分变化规律. 硕士学位论文, 哈尔滨工业大学, 2016. 10 Juillet C, Oudriss A, Balmain J, et al. Corrosion Science, 2018, 142, 266. 11 Aydinöz M E, Brenne F, Schaper M, et al. Materials Science and Engineering A, 2016, 669, 246. 12 Xiao H, Li S M, Xiao W J, et al. Materials Letters, 2017, 188, 260. 13 Deng D, Peng R L, Brodin H, et al. Materials Science and Engineering A, 2018, 713, 294. 14 Qi H, Azer M, Ritter A. Metallurgical and Materials Transactions A, 2009, 40 (10), 2410. 15 Sui S, Tan H, Chen J, et al. Acta Materialia, 2019, 164, 413. 16 Cao G H, Sun T Y, Wang C H, et al. Materials Characterization, 2018, 136, 398. 17 Strondl A, Fischer R, Frommeyer G, et al. Materials Science and Engineering A, 2008, 480 (1-2), 138. 18 Si J Y, Liu F. Materials Reports B: Research Papers, 2013, 27 (2), 89 (in Chinese). 司家勇, 刘锋. 材料导报:研究篇, 2013, 27 (2), 89. 19 Azadian S, Wei L Y, Warren R. Materials Characterization, 2004, 53 (1), 7. 20 Zhang D M, Cui H C, Yang S L, et al. Materials Reports B: Research Papers, 2016, 30 (4), 96(in Chinese). 张冬梅, 崔海超, 杨尚磊, 等. 材料导报:研究篇, 2016, 30 (4), 96. 21 Sundararaman M, Mukhopadhyay P. High Temperature Materials and Processes, 1993, 11 (1-4), 351. 22 Ding R G, Huang Z W, Li H Y, et al. Materials Characterization, 2015, 106, 324. 23 Zhu Z G, An X H, Lu W J, et al. Materials Research Letters, 2019, 7 (11), 453. 24 Kuo Y L, Horikawa S, Kakehi K. Materials and Design, 2017, 116, 411. 25 Li X, Shi J J, Wang C H, et al. Journal of Alloys and Compounds, 2018, 764, 639. 26 Zhang D, Niu W, Cao X, et al. Materials Science and Engineering A, 2015, 644, 32. 27 Ramakrishnan P. Indian Welding Journal, 1972, 4 (3), 89. 28 Zhang Y C. Studies on component segregation and strengthening mechanism of laser cladding Inconel 718 alloy coating. Ph.D. Thesis, Shanghai Jiao Tong University, China, 2013 (in Chinese). 张尧成. 激光熔覆Inconel 718合金涂层的成分偏聚与强化机理研究. 博士学位论文, 上海交通大学, 2013. 29 Ma M, Wang Z, Zeng X. Materials Characterization, 2015, 106, 420. 30 Nie P, Ojo O A, Li Z. Acta Materialia, 2014, 77, 85. 31 Dehoff R R, Kirka M, Sames W J, et al. Materials Science and Technology, 2015, 31 (8), 931. 32 Roehling T T, Wu S S Q, Khairallah S A, et al. Acta Materialia, 2017, 128, 197. 33 Xiao H. Microstructure control and its mechanisms during lase additive manufacturing of Inconel 718. Ph.D. Thesis, Hunan University, China, 2017 (in Chinese). 肖辉. 激光增材制造Inconel 718合金凝固组织调控及机理研究. 博士学位论文, 湖南大学, 2017. 34 Liu F, Lin X, Leng H, et al. Optics and Laser Technology, 2013, 45 (1), 330. 35 Hashmi S. Comprehensive materials processing, Elsevier Press, Netherlands, 2014. pp.221 36 Kistler N A, Nassar A R, Reutzel E W, et al. Journal of Laser Applications, 2017, 29 (2), 022005 37 Tian Y, McAllister D, Colijn H, et al. Metallurgical and Materials Tran-sactions A, 2014, 45 (10), 4470. 38 Chen Y, Lu F, Zhang K, et al. Journal of Alloys and Compounds, 2016, 670, 312. 39 Parimi L L, Ravi G, Clark D, et al. Materials Characterization, 2014, 89, 102. 40 Li Y. Unraveling the mechanisms of columnar to equiaxed transition, hot cracking and recrystallization in Ni-based superalloy DZ125L fabricated by laser additive manufacturing. Ph.D. Thesis, Xi'an Jiaotong University, China, 2018 (in Chinese). 李尧. 激光增材制造镍基高温合金DZ125L柱状晶向等轴晶转变、热裂纹和再结晶的机理研究. 博士学位论文, 西安交通大学, 2018. 41 Dinda G P, Dasgupta A K, Mazumder J. Scripta Materialia, 2012, 67 (5), 503. 42 Wei H L, Mazumder J, DebRoy T. Scientific Reports, 2015, 5, 1. 43 Wan H Y, Zhou Z J, Li C P, et al. Journal of Materials Science and Technology, 2018, 34 (10), 1799. 44 Marattukalam J J, Karlsson D, Pacheco V, et al. Materials and Design, 2020, 193, 108852. 45 Popovich V A, Borisov E V, Popovich A A, et al. Materials and Design, 2017, 114, 441. 46 Mukherjee T, Zhang W, DebRoy T. Computational Materials Science, 2017, 126, 360. 47 Nadammal N, Cabeza S, Mishurova T, et al. Materials and Design, 2017, 134, 139. 48 Yoo Y S J, Book T A, Sangid M D, et al. Materials Science and Engineering A, 2018, 724, 444. 49 Mukherjee T, Manvatkar V, De A, et al. Scripta Materialia, 2017, 127, 79. 50 Yong C, Zhongxu X, Haihong Z, et al. Rapid Prototyping Journal, 2019, 25 (4), 792. 51 Lesyk D A, Martinez S, Mordyuk B N, et al. Surface and Coatings Technology, 2020, 381, 125136. 52 Gill A, Telang A, Mannava S R, et al. Materials Science and Engineering A, 2013, 576, 346. 53 Ni M, Chen C, Wang X, et al. Materials Science and Engineering A, 2017, 701, 344. 54 Liu S Y, Li H Q, Qin C X, et al. Materials & Design, 2020, 191, 108642. 55 Zhao X, Chen J, Lin X, et al. Materials Science and Engineering A, 2008, 478 (1-2), 119. 56 Popovich V A, Borisov E V, Popovich A A, et al. Materials and Design, 2017, 131, 12. 57 Strößner J, Terock M, Glatzel U. Advanced Engineering Materials, 2015, 17 (8), 1099. 58 Kirka M M, Medina F, Dehoff R, et al. Materials Science and Enginee-ring A, 2017, 680, 338. 59 Popovich A A, Sufiiarov V S, Polozov I A, et al. Key Engineering Mate-rials, 2015, 651-653, 665. 60 Strondl A, Palm M, Gnauk J, et al. Materials Science and Technology, 2011, 27 (5), 876. 61 Lu Y, Wu S, Gan Y, et al. Optics and Laser Technology, 2015, 75, 197. 62 Blackwell P L. Journal of Materials Processing Technology, 2005, 170 (1-2), 240. 63 Zhong C, Gasser A, Kittel J, et al. Materials and Design, 2016, 98, 128. 64 Raghavan S, Zhang B, Wang P, et al. Materials and Manufacturing Processes, 2017, 32 (14), 1588. 65 Chlebus E, Gruber K, Kuźnicka B, et al. Materials Science and Engineering A, 2015, 639, 647. 66 Sames W J, Unocic K A, Dehoff R R, et al. Journal of Materials Research, 2014, 29 (17), 1920. 67 Ivanov D, Travyanov A, Petrovskiy P, et al. Additive Manufacturing, 2017, 18, 269. 68 Zhang Q L, Yao J H, Mazumder J. Journal of Iron and Steel Research International, 2011, 18 (4), 73. 69 Li Z, Chen J, Sui S, et al. Additive Manufacturing, 2020, 31, 100941. 70 Stevens E L, Toman J, To A C, et al. Materials and Design, 2017, 119, 188. 71 Amirjan M, Sakiani H. International Journal of Advanced Manufacturing Technology, 2019, 103, 1769. 72 Todaro C J, Easton M A, Qiu D, et al. Nature Communications, 2020, 11 (1), 142. 73 Fan W, Tan H, Lin X, et al. Materials & Design, 2018, 160, 1096.