Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20080021-10    https://doi.org/10.11896/cldb.20080021
  金属与金属基复合材料 |
激光增材制造Inconel 718高温合金的研究进展
杨浩, 李尧, 郝建民
长安大学材料科学与工程学院,西安 710064
Research Progress of Laser Additively Manufactured Inconel 718 Superalloy
YANG Hao, LI Yao, HAO Jianmin
School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
下载:  全 文 ( PDF ) ( 11345KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Inconel 718高温合金具有优异的高温力学性能以及良好的耐热腐蚀性能,被广泛应用于航空航天、燃气轮机、核电及化石等领域。近年来,凭借自由设计和近净成型等特点,激光增材制造技术在Inconel 718等复杂精密零部件的制造领域具有不可替代的作用。激光增材制造技术是一个快速加热与冷却的过程,得到的合金枝晶/胞晶和析出相的尺寸比传统制备工艺更加细小,且表现出跨尺度的多级分层结构,呈现出独特的力学性能相关性。随着人们对激光增材制造Inconel 718高温合金的广泛研究,目前Inconel 718合金的力学性能可以达到甚至超过锻件的水平。然而,激光增材制造的Inconel 718合金内部往往存在显著的凝固织构和较大的残余拉应力,使得合金的力学性能呈各向异性且疲劳持久性能较差,在一定程度上限制了激光增材制造技术的推广应用。因此,需从跨尺度组织结构角度入手,通过工艺参数调控和后处理技术,实现Inconel 718合金的高质量增材制造。本文归纳总结了激光选区熔化和激光立体成形技术在制备 Inconel 718合金方面的研究进展,围绕“工艺参数-显微组织结构-力学性能”的本构关系,重点阐述了不同增材制造工艺及加工参数对Inconel 718中枝晶生长、析出相、晶粒结构以及残余应力等显微组织结构和力学性能的影响,并讨论了激光增材制造Inconel 718高温合金面临的难题及其解决措施。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨浩
李尧
郝建民
关键词:  激光增材制造  Inconel 718高温合金  跨尺度组织结构  力学性能    
Abstract: Thanks to the excellent high-temperature mechanical properties and the good resistance to hot corrosion, Inconel 718 superalloy is widely used in aerospace, gas turbines, nuclear power and fossil fields. Recently, laser additive manufacturing (LAM) technique, with the characteristics of design freedom and near net shaping, shows great potential applications in the fabrication of complex and precise Inconel 718 components. Owing to the rapid heating and cooling process of LAM, the size of dendrite/cell and precipitates is much finer than that fabricated by traditional methods. Moreover, the resulted hierarchically heterogeneous microstructure shows unique correlation with mechanical properties. With extensive research on the LAM of Inconel 718 superalloy, the mechanical properties can reach or even exceed the as-forged counterparts. Ho-wever, significant solidification texture and large residual tensile stresses in the Inconel 718 superalloys fabricated by LAM give rise to anisotropic mechanical properties and poor fatigue durability, which limits LAM technique to a large certain extent. To this end, the application of LAM technology needs to start from the perspective of multi-scale microstructure, through processing control and post-processing treatment, to achieve high-quality the Inconel 718 superalloys fabricated by LAM. In this article, the research progress of laser selective melting and laser solid forming technology in the fabrication of Inconel 718 superalloy is summarized by focusing on the relationship of process parameters, microstructures and mechanical properties. The effect of LAM methods and processing parameters on the microstructures (such as dendrite growth, precipitates, grain structure and residual stresses) and the mechanical properties are highlighted. In addition, the solutions to the difficulties of the Inconel 718 superalloys fabricated by LAM are discussed.
Key words:  laser additive manufacturing    Inconel 718 superalloy    multi-scale microstructure    mechanical properties
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  TG132  
基金资助: 国家自然科学基金(51901026);长安大学中央高校基本科研业务费(300102319301)
通讯作者:  liyaomse@chd.edu.cn   
作者简介:  杨浩,2019年6月毕业于攀枝花学院,获得工学学士学位。现为长安大学材料科学与工程学院硕士研究生,在郝建民教授及李尧博士的指导下进行研究。目前主要研究领域为激光增材制造镍基高温合金。
李尧,长安大学材料科学与工程学院讲师,硕士研究生导师。2018年6月获得西安交通大学材料科学与工程专业博士学位。近年来主要从事高能束(激光和电子束)焊接/增材制造镍基高温合金和难熔金属间化合物的显微组织与力学性能本构关系的研究,同时致力于同步辐射先进表征技术在材料学科的应用与软件开发。目前在国外学术刊物上发表SCI论文20余篇,包括Nature Communications, Additive Manufacturing, Applied Physics Letters, Materials & Design等国际知名期刊,其中一篇入选 ESI 高被引论文。此外,获得已授权计算机软件著作权2项。
引用本文:    
杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
YANG Hao, LI Yao, HAO Jianmin. Research Progress of Laser Additively Manufactured Inconel 718 Superalloy. Materials Reports, 2022, 36(6): 20080021-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080021  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20080021
1 Wang X, Gong X, Chou K. Proceedings of the Institution of Mechanical Engineers Part B, 2017, 231 (11), 1890.
2 DebRoy T, Wei H L, Zuback J S. Progress in Materials Science, 2018, 92, 112.
3 Liu F, Lin X, Huang C, et al. Journal of Alloys and Compounds, 2011, 509 (13), 4505.
4 Wei C, Gu H, Sun Z, et al. Additive Manufacturing, 2019, 29, 100818.
5 Frazier W E. Journal of Materials Engineering and Performance, 2014, 23 (6), 1917.
6 Hosseini E, Popovich V A. Additive Manufacturing, 2019, 30, 100877.
7 Jia Q, Gu D. Journal of Alloys and Compounds, 2014, 585, 713.
8 Sui S, Chen J, Zhang R, et al. Materials Science and Engineering A, 2017, 688 (2), 480.
9 Li Z L. Compositional variation in Inconel 718 alloy fabricated by selective laser melting. Master's Thesis, Harbin Institute of Technology, China, 2016 (in Chinese) .
李珠玲. 选区激光熔化IN718合金的成分变化规律. 硕士学位论文, 哈尔滨工业大学, 2016.
10 Juillet C, Oudriss A, Balmain J, et al. Corrosion Science, 2018, 142, 266.
11 Aydinöz M E, Brenne F, Schaper M, et al. Materials Science and Engineering A, 2016, 669, 246.
12 Xiao H, Li S M, Xiao W J, et al. Materials Letters, 2017, 188, 260.
13 Deng D, Peng R L, Brodin H, et al. Materials Science and Engineering A, 2018, 713, 294.
14 Qi H, Azer M, Ritter A. Metallurgical and Materials Transactions A, 2009, 40 (10), 2410.
15 Sui S, Tan H, Chen J, et al. Acta Materialia, 2019, 164, 413.
16 Cao G H, Sun T Y, Wang C H, et al. Materials Characterization, 2018, 136, 398.
17 Strondl A, Fischer R, Frommeyer G, et al. Materials Science and Engineering A, 2008, 480 (1-2), 138.
18 Si J Y, Liu F. Materials Reports B: Research Papers, 2013, 27 (2), 89 (in Chinese).
司家勇, 刘锋. 材料导报:研究篇, 2013, 27 (2), 89.
19 Azadian S, Wei L Y, Warren R. Materials Characterization, 2004, 53 (1), 7.
20 Zhang D M, Cui H C, Yang S L, et al. Materials Reports B: Research Papers, 2016, 30 (4), 96(in Chinese).
张冬梅, 崔海超, 杨尚磊, 等. 材料导报:研究篇, 2016, 30 (4), 96.
21 Sundararaman M, Mukhopadhyay P. High Temperature Materials and Processes, 1993, 11 (1-4), 351.
22 Ding R G, Huang Z W, Li H Y, et al. Materials Characterization, 2015, 106, 324.
23 Zhu Z G, An X H, Lu W J, et al. Materials Research Letters, 2019, 7 (11), 453.
24 Kuo Y L, Horikawa S, Kakehi K. Materials and Design, 2017, 116, 411.
25 Li X, Shi J J, Wang C H, et al. Journal of Alloys and Compounds, 2018, 764, 639.
26 Zhang D, Niu W, Cao X, et al. Materials Science and Engineering A, 2015, 644, 32.
27 Ramakrishnan P. Indian Welding Journal, 1972, 4 (3), 89.
28 Zhang Y C. Studies on component segregation and strengthening mechanism of laser cladding Inconel 718 alloy coating. Ph.D. Thesis, Shanghai Jiao Tong University, China, 2013 (in Chinese).
张尧成. 激光熔覆Inconel 718合金涂层的成分偏聚与强化机理研究. 博士学位论文, 上海交通大学, 2013.
29 Ma M, Wang Z, Zeng X. Materials Characterization, 2015, 106, 420.
30 Nie P, Ojo O A, Li Z. Acta Materialia, 2014, 77, 85.
31 Dehoff R R, Kirka M, Sames W J, et al. Materials Science and Technology, 2015, 31 (8), 931.
32 Roehling T T, Wu S S Q, Khairallah S A, et al. Acta Materialia, 2017, 128, 197.
33 Xiao H. Microstructure control and its mechanisms during lase additive manufacturing of Inconel 718. Ph.D. Thesis, Hunan University, China, 2017 (in Chinese).
肖辉. 激光增材制造Inconel 718合金凝固组织调控及机理研究. 博士学位论文, 湖南大学, 2017.
34 Liu F, Lin X, Leng H, et al. Optics and Laser Technology, 2013, 45 (1), 330.
35 Hashmi S. Comprehensive materials processing, Elsevier Press, Netherlands, 2014. pp.221
36 Kistler N A, Nassar A R, Reutzel E W, et al. Journal of Laser Applications, 2017, 29 (2), 022005
37 Tian Y, McAllister D, Colijn H, et al. Metallurgical and Materials Tran-sactions A, 2014, 45 (10), 4470.
38 Chen Y, Lu F, Zhang K, et al. Journal of Alloys and Compounds, 2016, 670, 312.
39 Parimi L L, Ravi G, Clark D, et al. Materials Characterization, 2014, 89, 102.
40 Li Y. Unraveling the mechanisms of columnar to equiaxed transition, hot cracking and recrystallization in Ni-based superalloy DZ125L fabricated by laser additive manufacturing. Ph.D. Thesis, Xi'an Jiaotong University, China, 2018 (in Chinese).
李尧. 激光增材制造镍基高温合金DZ125L柱状晶向等轴晶转变、热裂纹和再结晶的机理研究. 博士学位论文, 西安交通大学, 2018.
41 Dinda G P, Dasgupta A K, Mazumder J. Scripta Materialia, 2012, 67 (5), 503.
42 Wei H L, Mazumder J, DebRoy T. Scientific Reports, 2015, 5, 1.
43 Wan H Y, Zhou Z J, Li C P, et al. Journal of Materials Science and Technology, 2018, 34 (10), 1799.
44 Marattukalam J J, Karlsson D, Pacheco V, et al. Materials and Design, 2020, 193, 108852.
45 Popovich V A, Borisov E V, Popovich A A, et al. Materials and Design, 2017, 114, 441.
46 Mukherjee T, Zhang W, DebRoy T. Computational Materials Science, 2017, 126, 360.
47 Nadammal N, Cabeza S, Mishurova T, et al. Materials and Design, 2017, 134, 139.
48 Yoo Y S J, Book T A, Sangid M D, et al. Materials Science and Engineering A, 2018, 724, 444.
49 Mukherjee T, Manvatkar V, De A, et al. Scripta Materialia, 2017, 127, 79.
50 Yong C, Zhongxu X, Haihong Z, et al. Rapid Prototyping Journal, 2019, 25 (4), 792.
51 Lesyk D A, Martinez S, Mordyuk B N, et al. Surface and Coatings Technology, 2020, 381, 125136.
52 Gill A, Telang A, Mannava S R, et al. Materials Science and Engineering A, 2013, 576, 346.
53 Ni M, Chen C, Wang X, et al. Materials Science and Engineering A, 2017, 701, 344.
54 Liu S Y, Li H Q, Qin C X, et al. Materials & Design, 2020, 191, 108642.
55 Zhao X, Chen J, Lin X, et al. Materials Science and Engineering A, 2008, 478 (1-2), 119.
56 Popovich V A, Borisov E V, Popovich A A, et al. Materials and Design, 2017, 131, 12.
57 Strößner J, Terock M, Glatzel U. Advanced Engineering Materials, 2015, 17 (8), 1099.
58 Kirka M M, Medina F, Dehoff R, et al. Materials Science and Enginee-ring A, 2017, 680, 338.
59 Popovich A A, Sufiiarov V S, Polozov I A, et al. Key Engineering Mate-rials, 2015, 651-653, 665.
60 Strondl A, Palm M, Gnauk J, et al. Materials Science and Technology, 2011, 27 (5), 876.
61 Lu Y, Wu S, Gan Y, et al. Optics and Laser Technology, 2015, 75, 197.
62 Blackwell P L. Journal of Materials Processing Technology, 2005, 170 (1-2), 240.
63 Zhong C, Gasser A, Kittel J, et al. Materials and Design, 2016, 98, 128.
64 Raghavan S, Zhang B, Wang P, et al. Materials and Manufacturing Processes, 2017, 32 (14), 1588.
65 Chlebus E, Gruber K, Kuźnicka B, et al. Materials Science and Engineering A, 2015, 639, 647.
66 Sames W J, Unocic K A, Dehoff R R, et al. Journal of Materials Research, 2014, 29 (17), 1920.
67 Ivanov D, Travyanov A, Petrovskiy P, et al. Additive Manufacturing, 2017, 18, 269.
68 Zhang Q L, Yao J H, Mazumder J. Journal of Iron and Steel Research International, 2011, 18 (4), 73.
69 Li Z, Chen J, Sui S, et al. Additive Manufacturing, 2020, 31, 100941.
70 Stevens E L, Toman J, To A C, et al. Materials and Design, 2017, 119, 188.
71 Amirjan M, Sakiani H. International Journal of Advanced Manufacturing Technology, 2019, 103, 1769.
72 Todaro C J, Easton M A, Qiu D, et al. Nature Communications, 2020, 11 (1), 142.
73 Fan W, Tan H, Lin X, et al. Materials & Design, 2018, 160, 1096.
[1] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[2] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[3] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[4] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[5] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[6] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[7] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[8] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[9] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[10] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[11] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[12] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[13] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[14] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[15] 杨佳行, 韩永典, 徐连勇. 瞬态电流键合对Sn-Ag-Cu钎料焊点界面反应的影响[J]. 材料导报, 2022, 36(1): 20100132-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed