Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 21050230-9    https://doi.org/10.11896/cldb.21050230
  无机非金属及其复合材料 |
面向水下智能建造的3D打印混凝土配合比优化研究
孙晓燕, 陈龙, 王海龙*, 张静
浙江大学建筑工程学院,杭州 310058
Mix Proportion Optimization of 3D Printing Concrete for Underwater Intelligent Construction
SUN Xiaoyan, CHEN Long, WANG Hailong*, ZHANG Jing
School of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058,China
下载:  全 文 ( PDF ) ( 7088KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着陆地资源紧缺,水下建造成为工程开发的必经之路。现阶段水下混凝土的研究较为系统,尚无针对水下3D打印混凝土的研究见诸报道。水下智能建造可数字成型、免模施工,有利于推动深地深海工程的发展,3D打印混凝土为其核心技术。
目前面向水下混凝土和陆地3D打印混凝土的设计方法尚未综合考虑水下智能建造工艺和服役环境的特殊性。因此,本工作根据力学性能、可打印性能、水下工作性能建立了水下3D打印混凝土配合比优化设计流程,针对水胶比、矿粉掺量、砂胶比、细骨料级配、絮凝剂掺量、触变剂掺量等材料参数开展序列化试验设计和试验研究。结果表明:成型后混凝土28 d抗压强度随水胶比、矿粉比例和砂胶比等参数的增长呈现降低趋势,其中水胶比影响最显著,其次为矿粉比例,砂胶比和絮凝剂掺量对材料强度的影响较小。基于试验数据和鲍罗米公式提出了具有较高拟合精度的水下3D打印混凝土配合比设计模型。
综合考虑打印成型混凝土强度和水下不分散性确定絮凝剂最佳掺量为胶凝材料质量的2%。确定流动度在165~190 mm范围可保障水下打印建造,基于DIC监测信息以砂胶比、触变剂掺量以及细骨料级配为基本变量建立3D打印混凝土建造期竖向变形时变预测模型,可用于水下3D打印混凝土建造稳定性控制。
本工作首次面向水下智能建造建立了3D打印混凝土配合比优化设计流程,提出了水下3D打印混凝土强度设计模型和建造期竖向变形预测模型,为水下智能建造提供理论依据和工程借鉴。优化后水下打印成型混凝土28 d抗压强度达到55 MPa,水陆强度比达到93.9%,可满足水下智能建造结构的性能要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙晓燕
陈龙
王海龙
张静
关键词:  3D打印混凝土  流动度  可建造性  力学性能  竖向变形  水陆强度比  水下工作性能    
Abstract: With the shortage of land resources, underwater construction has become the necessary way for engineering development. At present, the research on underwater concrete is relatively systematic, but there is seldom report on the research on underwater 3D printing concrete. Underwater intelligent construction can be digital forming without formwork and can promote the development of deep-sea engineering, in which 3D printing concrete is its core construction technology.
Currently, the design methods for underwater concrete and land 3D printed concrete lack technical pertinence to underwater intelligent construction process and service environment. In this paper, the optimization design process of underwater 3D printing concrete mix proportion has been established according to the mechanical properties, printability and underwater working performance. A serials of experimental studies were designed and carried out considering the influences of water binder ratio, mineral powder dosage, sand binder ratio, fine aggregate gradation, flocculant and thixotropic agent content. The results showed that the 28 d compressive strength of printed concrete decreased with the increase of water binder ratio, mineral powder ratio, sand binder ratio and other parameters. The water binder ratio has the most significant effect, followed by the mineral powder ratio, and the change of sand binder ratio and the flocculant agent content have little effect on material strength. Based on the experimental data and Boromir formula, an underwater 3D printing concrete mix proportion design model with high fitting accuracy is proposed.
Considering the strength and underwater non-dispersibility of printed concrete, the optimum dosage of flocculant is 2% of the mass of cementitious material. The fluidity range of 165—190 mm can ensure the construction requirement of underwater printing. The time-varying vertical deformation prediction model is established with consideration of sand binder ratio, thixotropic agent content and fine aggregate gradation as basic variables, which has reliable accuracy and can be used to control the stability of underwater 3D printing concrete construction.
It is first times to systematically study the underwater 3D printing concrete, establish the 3D printed concrete mix proportion optimization design process for underwater intelligent construction, and put forward the underwater 3D printed concrete strength design model and the vertical defor-mation prediction model during construction process, which provides theoretical basis and experimental reference for underwater intelligent construction. The 28 d compressive strength of optimized underwater printed specimen is up to 55 MPa, and the water land strength ratio reaches 93.9%, which can meet the performance requirements of underwater intelligent construction structure.
Key words:  3D printing concrete    fluidity    constructability    mechanical property    vertical deformation    water land strength ratio    underwater performance
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TU502  
基金资助: 国家自然科学基金(52079123);浙江省重点研发计划(2021C01022)
通讯作者:  hlwang@zju.edu.cn   
作者简介:  孙晓燕,浙江大学建筑工程学院副教授。2004年毕业于大连理工大学,获工学博士学位,同年进入清华大学开展博士后研究,2006年至今在浙江大学任教。主要从事智能增材建造混凝土结构及其健康监测、全寿命周期结构维修管理研究。主持国家自然科学基金、国家高技术研究发展计划(863 计划)专项、浙江省自然科学基金、教育部博士点基金、浙江省重点研发项目子课题、浙江省科技创新团队项目子课题等多项科研课题,发表学术论文100 余篇,其中SCI、EI检索50余篇,已授权发明专利15项,获得计算机软件著作权1项。
王海龙,浙江大学建筑工程学院教授。2006年毕业于清华大学,获工学博士学位,同年进入浙江大学任教,中国建筑学会建材分会理事,中国建筑学会防护与修复材料及应用技术委员会委员,中国建筑学会建筑材料测试技术专业委员会委员,中国土木工程学会混凝土质量委员会委员。主要从事混凝土结构及其耐久性、新型材料与结构、智能建造结构的研究。先后主持国家863项目、国家自然科学基金、留学回国人员择优资助项目、浙江省自然科学基金、交通部西部科技项目、省厅级各类科技项目30余项。研究成果获国家科技进步二等奖1项,国家发明专利19项、计算机软件著作权1项。合作出版论著1部,参与编制行业技术规程3部、地方标准2部。发表科技论文百余篇。
引用本文:    
孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
SUN Xiaoyan, CHEN Long, WANG Hailong, ZHANG Jing. Mix Proportion Optimization of 3D Printing Concrete for Underwater Intelligent Construction. Materials Reports, 2022, 36(4): 21050230-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050230  或          http://www.mater-rep.com/CN/Y2022/V36/I4/21050230
1 Edgar J, Tint S. Johnson Matthey Technology Review, 2015, 59(3),193.
2 Gosselin C, Duballet R, Roux P, et al. Materials & Design, 2016, 100(6),102.
3 Kirchberg S, Abdin Y, Ziegmann G. Powder Technology, 2011, 207(1-3),311.
4 Lloret E, Shahab A R, Flatt R J, et al. Computer-Aided Design, 2015, 60,40.
5 Mazhoud B,Perrot A,Picandet V, et al. Construction & Building Mate-rials, 2019, 214(30),458.
6 Ma G, Li Z, Wang L. Construction & Building Materials, 2018, 162,613.
7 Paul S C, Tay Y, Panda B, et al. Archives of Civil and Mechanical Engineering, 2017, 18(1),311.
8 Le T T, Austin S A, Lim S, et al. Cement & Concrete Research, 2012, 42(3),558.
9 Le T T, Austin S A, Lim S, et al. Materials & Structures, 2012, 45(8),1221.
10 Yuan Q, Li Z, Zhou D, et al. Construction & Building Materials, 2019, 227,116600.
11 Soltan D G, Li V C. Cement and Concrete Composites, 2018, 90,1.
12 Zhang Y, Zhang Y, She W, et al. Construction and Building Materials, 2019, 201,278.
13 Zhang Y, Zhang Y, Liu G, et al. Construction and Building Materials, 2018, 174(20),263.
14 Sun X, Wang Q, Wang H, et al. Construction and Building Materials, 2020, 247,118590.
15 Khayat K H, Mikanovic N. Understanding the Rheology of Concrete, 2012,8,209.
16 Khayat K H. ACI Materials Journal, 1995, 92(2),164.
17 Joseph J, Assaad I C. Materials & Structures, 2013,46(10)1613.
18 Heniegal A M, Maaty A A E S, Agwa I S. Alexandria Engineering Journal, 2015, 54(2), 183.
19 Horszczaruk E B, Brzozowski P. Procedia Engineering, 2017, 196,97.
20 Wu S, Jiang S F, Shen S, et al. Materials, 2019, 12(2),324.
21 Chen Guoxin, Du Zhiqin, Yang Ri, et al. Concrete, 2012(2),117(in Chinese).
陈国新, 杜志芹, 杨日,等. 混凝土, 2012(2),117.
22 Zhang Ming, Wang Fuming, Ye Kun, et al. Bulletin of the Chinese Ceramic Society, 2016, 35 (8),2611(in Chinese).
张鸣, 王付鸣, 叶坤,等. 硅酸盐通报, 2016, 35(8),2611.
23 Zhang Ming, Zhou Sitong, Wang Fuming, et al. Concrete, 2017(8),140(in Chinese).
张鸣,周思通,王付鸣,等. 混凝土, 2017(8),140.
24 Zhao Tongfeng. Concrete, 2019(12),120(in Chinese).
赵同峰. 混凝土, 2019(12),120.
25 Zhao Jing, Wang Jinjing, Wu Huijun. Concrete, 2015(8),31(in Chinese).
赵晶,王进京,吴会军. 混凝土, 2015(8), 31.
26 Yuan Chunyan. Traffic Engineering and Technology of National Defense, 2020,18(4), 35(in Chinese).
袁春燕. 国防交通工程与技术,2020,18(4),35.
27 Chen Weitao. Traffic Engineering and Technology of National Defense, 2020,18(4),43(in Chinese).
陈卫涛. 国防交通工程与技术,2020,18(4),43.
28 Zheng Wenzhong, Li Li. Journal of Hunan University (Natural Science Edition), 2009 (2), 18(in Chinese).
郑文忠, 李莉. 湖南大学学报(自然科学版), 2009(2),18.
29 Ma Wan, Zhao Tiejun, Wang Penggang, et al. Concrete and Cement Products, 2013(9), 22(in Chinese).
马万, 赵铁军, 王鹏刚,等. 混凝土与水泥制品, 2013(9),22.
30 He Feng, Huang Zhengyu. New Building Materials, 2007, 34(3), 74(in Chinese).
何峰, 黄政宇. 新型建筑材料, 2007, 34(3),74.
31 GB/T17671-2020. Methods of testing cements-determinstion of strength(ISO methods),China Standard Press, 2020(in Chinese).
GB/T17671-2020.水泥胶砂强度检验方法(ISO法),中国标准出版社,2020.
32 GB/T 2419-2005. Test method for fluidity of cement mortar, China Stan-dard Press, 2005(in Chinese).
GB/T 2419-2005.水泥胶砂流动度测定方法,中国标准出版社,2005.
33 DLT 5117-2000. Test code on non-dispersible underwater concret, China Electric Power Press, 2000(in Chinese).
DLT 5117-2000.水下不分散混凝土试验规程,中国电力出版社,2000.
34 Mohd Shariq, Jagdish Prasad, Amjad Masood. Construction & Building Materials,2010, 24(8),1469.
35 Li J. Cement and Concrete Research, 1997, 27(6),833.
36 Sun W, Yan H D. Journal of Southeast University (Natural Science Edition), 2003(4), 450(in Chinese).
孙伟, 严捍东. 东南大学学报(自然科学版),2003(4),450.
37 Ganesh P G, Bang J W, Lee B J, et al. Advances in Materials Science and Engineering, 2015, 15, 161753.
38 Li C, Li J, Telesca A, et al. Cement and Concrete Research, 2021,140,106321.
39 Chang J, Cui K. Journal of Building Materials, 2020, 23(2), 438(in Chinese).
常钧, 崔凯. 建筑材料学报, 2020, 23(2), 438.
40 Roussel N, Ovarlez G, Garrault S, et al. Cement and Concrete Research, 2012, 42(1),148.
41 Roussel N. Cement & Concrete Research, 2005, 35(9),1656.
42 Ferron R P, Gregori A, Sun Z, et al. ACI Structural Journal, 2007, 104(3),242.
43 Lin Baoyu, Cai Yuebo, Shan Guoliang. Journal of Hydropower, 1995 (3), 22(in Chinese).
林宝玉,蔡跃波,单国良. 水力发电学报, 1995(3), 22.
44 Song B D, Park B G, Choi Y, et al. Construction & Building Materials, 2017, 144, 74.
45 Lin Xian, Chen Linghua, Zhou Wei, et al. Concrete, 2006(4), 52(in Chinese).
林鲜,陈凌华,周伟,等. 混凝土, 2006(4), 52.
46 Zhong Weiqiu, Zhang Qingliang, Zhang Shouwei. Journal of Building Structure, 2008, 29(S1), 146(in Chinese).
仲伟秋,张庆亮,张寿维. 建筑结构学报, 2008, 29(S1), 146.
47 Ye K. Research on high performance marine imderwater concrete. Master's Thesis, Yangzhou University, China,2016(in Chinese).
叶坤. 高性能海工水下不分散混凝土研究.硕士学位论文,扬州大学,2016.
48 Liao Shaohua. Concrete and Cement Products,2021(2),26(in Chinese).
廖绍华. 混凝土与水泥制品,2021(2),26.
[1] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[2] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[3] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[4] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[5] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[6] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[7] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[8] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[9] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[10] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[11] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[12] 杨佳行, 韩永典, 徐连勇. 瞬态电流键合对Sn-Ag-Cu钎料焊点界面反应的影响[J]. 材料导报, 2022, 36(1): 20100132-5.
[13] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[14] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[15] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed