Research Progress on Static and Dynamic Mechanical Properties and Ballistic Properties of Basalt Fiber Composites
YAN Zhaopu1, WANG Yangwei1,*, ZHANG Yan2, LIU Yifeng3, CHENG Huanwu1
1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China 2 PUFAN Perfect Protection LTD,Beijing 100161, China 3 PAWOKE Mineral Fiber Products LTD, Guang'an 638600, Sichuan, China
Abstract: Basalt fiber composites with excellent mechanical properties, good environmental adaptability and competitive price can be prepared by using basalt fiber as reinforcement and resin matrix. It has the potential to replace the existing glass fiber composites in the fields of high and new technology, such as vehicles, ships, and aerospace. In the past 20 years, the mechanical properties of basalt fiber composites have attracted much attention. Among the basalt fiber reinforced resin matrix composites, the mechanical properties of epoxy resin matrix composites are more outstanding, and the related research has attracted the most attention. In the study of quasi-static mechanical properties, compared with glass fiber compo-sites, basalt fiber composites are better in tensile properties, compression properties, bending properties, low-speed impact resistance, fatigue properties, wear resistance and other aspects, and they also show stronger performance improvement when mixed with carbon fiber composites. Moreover, the mechanical properties of basalt fiber composites can be further improved by fiber chemical modification and matrix nano particle modification. The research on dynamic mechanical properties of basalt fiber composites in China mainly focuses on the composite materials composed of cement, asphalt, concrete and basalt fiber,and less attention is paid to high-performance resin-based composites. The dynamic tensile properties were studied thoroughly by foreign researchers. It is found that the dynamic tensile modulus, strength and strain of basalt fiber composites all increase with the increase of strain rate, and the increase range is 20%—60%; compared with glass fiber composites, basalt fiber composites exhibit higher elastic modulus, ultimate tensile strength and ultimate tensile strain under dynamic tensile conditions. However, at the present stage, researches on dynamic tensile properties of basalt fiber composites mainly focus on the lower range of about 100/s, and researches on dynamic compression properties are also extremely lacking, which makes it difficult to support the application of basalt fiber composites in service environments involving high-speed impact. The ballistic performance of basalt fiber composites is roughly equivalent to that of S-glass fiber composites. Because of the comprehensive environmental adaptability of basalt fiber composites, it can strengthen the inherent shortcomings of other fibers when it is mixed with other fibers to form composites. The variation of the elastic resistance of basalt fiber composites is affected by the matrix and fiber, and is reflected in the diffe-rent failure mechanisms. However, it is difficult to capture the microstructural change of the material itself in the process of high speed dynamic impact, and the failure mechanism can only be inferred from the fracture morphology. Therefore, in the research of ballistic resistance, the analy-tical study of impact deformation process and failure mechanism of basalt fiber composites by simulation technology is in urgent need of attention. The research progress of mechanical properties of basalt fiber reinforced resin matrix composites is summarized, and the research status of quasi-static, dynamic mechanical properties and ballistic properties are introduced respectively. The shortcomings in the research of mechanical properties of basalt fiber composites are analyzed and some suggestions are put forward. This review is expected to provide reference for the research and development of high performance and green basalt fiber composites.
闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
YAN Zhaopu, WANG Yangwei, ZHANG Yan, LIU Yifeng, CHENG Huanwu. Research Progress on Static and Dynamic Mechanical Properties and Ballistic Properties of Basalt Fiber Composites. Materials Reports, 2022, 36(4): 20110209-9.
1 Liu J X, Yang J P, Chen M R, et al. Thermochimica Acta, 2018, 660(1), 56. 2 Fiore V, Scalici T, Di Bella G, et al. Composites Part B: Engineering, 2015 (74), 74. 3 Hu X Q. Science & Technology Industry of China, 2018 (1), 77(in Chinese). 胡显奇.中国科技产业, 2018 (1), 77. 4 Jin Y X. Shandong Textile Science & Technology, 2010, 51(2), 37(in Chinese). 金友信.山东纺织科技, 2010, 51(2), 37. 5 Shi Q H. Fiber Glass, 2003 (4), 27(in Chinese). 石钱华.玻璃纤维, 2003 (4), 27. 6 Hu X Q. Hi-tech Fiber & Application, 2008, 33(6), 12(in Chinese). 胡显奇.高科技纤维与应用, 2008, 33(6), 12. 7 Li Z Z. Study on static and dynamic mechanical response of basalt fiber composite laminates. Master's Thesis, Southwest University of Science and Technology, China, 2017(in Chinese). 李祖湛. 玄武岩纤维复合材料层合板静、动态力学响应研究. 硕士学位论文, 西南科技大学, 2017. 8 Yang Z M, Liu J X, Feng X Y, et al. Transactions of Beijing Institute of Technology, 2018, 38(6), 655(in Chinese). 杨智明,刘金旭,冯新娅,等.北京理工大学学报,2018,38(6),655. 9 Liu J Q. Science & Technology Review, 2009, 27(9), 3(in Chinese). 刘嘉麒.科技导报, 2009, 27(9), 3. 10 Lopresto V, Leone C, Iorio I D. Composites Part B, 2011, 42(4), 717. 11 Dorigato A, Pegoretti A. Journal of Composite Materials, 2012, 46(15), 1773. 12 Chairman C A, Babu S P K. Journal of Applied Polymer Science, 2013, 130(1), 120. 13 Fiore V, Bella G D, Valenza A. Materials and Design, 2011, 32(4), 2091. 14 Wu Z, Wang X, Iwashita K, et al. Composites Part B, 2010, 41(5), 396. 15 Dorigato A, Pegoretti A. Journal of Composite Materials, 2014, 48(9), 1121. 16 Ferrante L, Sarasini F, Tirillò J, et al. Materials & Design, 2016, 98(15), 98. 17 Varley R J, Tian W, Leong K H, et al. Polymer Composites, 2013, 34(3), 320. 18 Ye G R, Yan Y W, Cao H L. Acta Materiae Compositae Sinica, 2014, 31(6), 1402(in Chinese). 叶国锐, 晏义伍, 曹海琳.复合材料学报, 2014, 31(6), 1402. 19 Kim M T, Kim M H, Rhee K Y, et al. Composites Part B, 2010, 42(3), 499. 20 Wang N. Investigation on fabrication and properties of modified lamellar boron nitride reinforced basalt fiber/epoxy resin composites. Master's Thesis, Southwest University of Science and Technology, China, 2020(in Chinese). 王楠. 改性片层氮化硼增强玄武岩纤维/环氧树脂复合材料的制备与性能研究. 硕士学位论文, 西南科技大学, 2020. 21 Hong X D, Yang D X, Deng E Y. Engineering Plastics Application, 2013, 41(2), 20(in Chinese). 洪晓东, 杨东旭, 邓恩燕.工程塑料应用, 2013, 41(2), 20. 22 Frankland S J V, Caglar A, Brenner D W, et al. The Journal of Physical Chemistry B, 2002, 106(12), 3046. 23 Paiva M C, Zhou B, Fernando K A S, et al. Composite Interfaces, 2005, 12(8), 757. 24 Kim M T, Rhee K Y, Park S J, et al. Composites Part B, 2012, 43(5), 2298. 25 Rhee K Y, Kim C J, Lee B H, et al. Journal of Nanoscience and Nanotechnology, 2013, 13(8), 5631. 26 Lee J H, Rhee K Y, Park S J. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010, 527(26), 6838. 27 Aghamohammadi H, Eslami F R, Tcharkhtchi A. International Journal of Adhesion and Adhesives, 2019, 98, 102538. 28 Wei C, Maria L. Composites Part A: Applied Science and Manufacturing, 2009, 40(8), 1082. 29 Shishevan F A, Akbulut H, Mohtadi-Bonab M A. Journal of Materials Engineering & Performance, 2017, 26(6), 2890. 30 Elmahdy A, Verleysen P. Polymer Testing, 2019, 76, 207. 31 Zhu L, Sun B, Gu B. Journal of Composite Materials, 2011, 46(11), 1285. 32 Gilat A, Goldberg R K, Roberts G D. Journal of Aerospace Engineering, 2007, 20(2), 75. 33 Littell J D, Ruggeri C R, Goldberg R K, et al. Journal of Aerospace Engineering, 2008, 21(3) 162. 34 Gerlach R, Siviour C R,Petrinic N. Polymer, 2008, 49(11), 2728. 35 Zhang H, Yao Y, Zhu D. Polymer Testing, 2016, 51, 29. 36 Yao Y, Zhu D, Zhang H. Journal of Materials in Civil Engineering, 2016, 28(9), 04016081. 37 Wang Y, Miao Y, Huang L, et al. International Journal of Impact Engineering, 2016, 97, 66. 38 Briscoe B J, Motamedi F. Wear, 1992, 158(1), 229. 39 Lu J, Zhu P, Ji A, et al. Polymers and Polymer Composites, 2017, 25, 289. 40 Naik N K, Yernamma P, Thoram N M, et al. Polymer Testing, 2010, 29(1), 14. 41 Zhu P, Lu J, Ji Q, et al. International Journal of Crashworthiness, 2016, 21(6), 1. 42 Ahmed E P V. Materials Today: Proceedings, 2020, 34(1), 171. 43 Elmahdy A, Verleysen P. Polymer Testing. 2020, 81, 106224. 44 Yang Z M. The preperation and protective performance optimization of basalt fiber cloth reinforced composite. Ph.D. Thesis, Beijing Institute of Technology, China, 2018(in Chinese). 杨智明. 玄武岩纤维布增强复合材料的制备及其防护性能优化研究. 博士学位论文, 北京理工大学, 2018. 45 Wang X L. Investigation on fabrication and mechanical properties of particle filled basalt fiber reinforced epoxy resin matrix composites. Master's Thesis, Beijing Institute of Technology, China, 2017(in Chinese). 王鑫磊. 颗粒掺杂玄武岩纤维增强环氧树脂基复合材料的制备与力学性能研究. 硕士学位论文, 北京理工大学, 2017. 46 Pan Z X, Sun B Z. Acta Materiae Compositae Sinica, 2015, 32(2), 395(in Chinese). 潘忠祥, 孙宝忠.复合材料学报, 2015, 32(2), 395. 47 Li Y J, Li F, Qu Y Z, et al. Engineering Plastics Application, 2011, 39(11), 26(in Chinese). 李英建, 李峰, 曲英章, 等.工程塑料应用, 2011, 39(11), 26. 48 Yang X B, Cheng X N. Fiber Reinforced Plastics/Composites, 2008(3), 27(in Chinese). 杨小兵, 程晓农.玻璃钢/复合材料, 2008(3), 27. 49 Li W, Zhu X, Wang X Q, et al. Journal of Vibration and Shock, 2009, 28(6), 52(in Chinese). 李伟, 朱锡, 王晓强, 等.振动与冲击, 2009, 28(6), 52. 50 Ha Y, Liu Z Y, Guan G S, et al. Chinese Journal of High Pressure Phy-sics, 2012, 26(5), 557(in Chinese). 哈跃, 刘志勇, 管公顺, 等.高压物理学报, 2012, 26(5), 557. 51 Ha Y, Guan G S, Chi R Q, et al. Chinese Journal of High Pressure Phy-sics, 2012, 26(3), 273(in Chinese). 哈跃, 管公顺, 迟润强, 等.高压物理学报, 2012, 26(3), 273. 52 Liu Z Y, Ha Y, Guan G S, et al. Spacecraft Environment Engineering, 2011, 28(4), 323(in Chinese). 刘志勇, 哈跃, 管公顺, 等.航天器环境工程, 2011, 28(4), 323. 53 Fu X. Hypervelocity impact characteristic investigation of the basalt fiber woven/Al-mesh combination protective structure. Master's Thesis, Harbin Institute of Technology, China, 2011(in Chinese). 傅翔. 玄武岩纤维布/铝丝网组合材料的空间碎片防护结构研究. 硕士学位论文, 哈尔滨工业大学, 2011. 54 Ha Y, Pang B J, Guan G S, et al. Journal of Harbin Institute of Techno-logy, 2007(5), 779(in Chinese). 哈跃, 庞宝君, 管公顺, 等.哈尔滨工业大学学报, 2007(5), 779. 55 Lin D L. Experimental research on penetration resistance of basalt fiber laminated plate. Master's Thesis, Lanzhou University, China, 2013(in Chinese). 林大路. 玄武岩纤维层合板抗侵彻性能试验研究. 硕士学位论文, 兰州大学, 2013. 56 Kong C F, Tian W, Liu S S, et al. Advanced Textile Technology, 2015, 23(4)(in Chinese). 孔春凤, 田伟, 刘双双, 等.现代纺织技术, 2015, 23(4), 20. 57 Yang Z, Liu J, Wang F, et al. Composite Structures, 2019, 229, 111434. 58 Li W, Li X D, Lu T Y, et al. China Plastics Industry, 2019, 47(10), 11(in Chinese). 李威, 李秀地, 芦天翊, 等.塑料工业, 2019, 47(10), 11.