Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20110209-9    https://doi.org/10.11896/cldb.20110209
  高分子与聚合物基复合材料 |
玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展
闫昭朴1, 王扬卫1,*, 张燕2, 刘毅烽3, 程焕武1
1 北京理工大学材料学院,北京 100081
2 北京普凡防护科技有限公司,北京 100161
3 四川帕沃可矿物纤维制品有限公司,四川 广安 638600
Research Progress on Static and Dynamic Mechanical Properties and Ballistic Properties of Basalt Fiber Composites
YAN Zhaopu1, WANG Yangwei1,*, ZHANG Yan2, LIU Yifeng3, CHENG Huanwu1
1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
2 PUFAN Perfect Protection LTD,Beijing 100161, China
3 PAWOKE Mineral Fiber Products LTD, Guang'an 638600, Sichuan, China
下载:  全 文 ( PDF ) ( 4025KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以玄武岩纤维为增强体、树脂为基体制得的玄武岩纤维复合材料具有优异的力学性能、良好的环境适应性和低廉的价格,其在车辆、船舶、航空航天等高新科技领域拥有替代现有玻璃纤维复合材料的潜力。近20年来,玄武岩纤维复合材料的力学性能受到了研究人员的大量关注。
玄武岩纤维增强树脂基复合材料中,环氧树脂基复合材料力学性能较为突出,相关研究最受关注。在准静态力学性能研究中,与玻璃纤维复合材料对比发现,玄武岩纤维复合材料在拉伸性能、压缩性能、弯曲性能、抗低速冲击性能、疲劳性能、耐磨性等方面都更为优异,与碳纤维混杂组成复合材料时也表现出更强的性能,并且通过纤维化学改性和基体纳米颗粒改性可进一步提升玄武岩纤维复合材料的力学性能。
国内玄武岩纤维复合材料动态力学性能的研究集中于水泥、沥青、混凝土等材料与玄武岩纤维组成的复合材料,对高性能树脂基复合材料的关注较少。国外研究人员对玄武岩纤维增强树脂基复合材料动态拉伸性能进行了全面研究,发现玄武岩纤维复合材料的动态拉伸模量、强度、应变等都随应变率增加而增大,增大幅度在20%~60%;与玻璃纤维复合材料相比,玄武岩纤维复合材料在动态拉伸条件下显示出更高的弹性模量、更大的拉伸强度和更高的拉伸应变。现阶段玄武岩纤维复合材料动态拉伸性能研究的应变率主要集中在100/s左右的较低范围,对动态压缩性能的研究也极为缺失,这难以支撑玄武岩纤维复合材料在涉及高速冲击服役环境中的应用。
玄武岩纤维复合材料抗弹性能与S-玻璃纤维复合材料相当,因为玄武岩纤维复合材料具有较为全面的力学性能与环境适应性,所以与其他纤维混杂组成复合材料时可以弥补其他纤维的固有缺点。玄武岩纤维复合材料抗弹性能的变化受基体、纤维等因素的影响,并反映在不同的失效机制上,但在高速动态冲击过程中难以捕获材料本身微观结构的变化,其失效机制只能通过断口形貌进行推测,因此在抗弹性能研究中,仿真模拟技术对玄武岩纤维复合材料冲击变形过程和失效机制的解析研究亟需得到关注。
本文归纳了玄武岩纤维增强树脂基复合材料的准静态、动态力学性能及抗弹性能研究现状,分析了现阶段玄武岩纤维复合材料力学性能研究中的不足并提出了建议,以期为高性能、绿色玄武岩纤维复合材料的研究发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫昭朴
王扬卫
张燕
刘毅烽
程焕武
关键词:  玄武岩纤维  复合材料  力学性能  抗弹性能    
Abstract: Basalt fiber composites with excellent mechanical properties, good environmental adaptability and competitive price can be prepared by using basalt fiber as reinforcement and resin matrix. It has the potential to replace the existing glass fiber composites in the fields of high and new technology, such as vehicles, ships, and aerospace. In the past 20 years, the mechanical properties of basalt fiber composites have attracted much attention.
Among the basalt fiber reinforced resin matrix composites, the mechanical properties of epoxy resin matrix composites are more outstanding, and the related research has attracted the most attention. In the study of quasi-static mechanical properties, compared with glass fiber compo-sites, basalt fiber composites are better in tensile properties, compression properties, bending properties, low-speed impact resistance, fatigue properties, wear resistance and other aspects, and they also show stronger performance improvement when mixed with carbon fiber composites. Moreover, the mechanical properties of basalt fiber composites can be further improved by fiber chemical modification and matrix nano particle modification.
The research on dynamic mechanical properties of basalt fiber composites in China mainly focuses on the composite materials composed of cement, asphalt, concrete and basalt fiber,and less attention is paid to high-performance resin-based composites. The dynamic tensile properties were studied thoroughly by foreign researchers. It is found that the dynamic tensile modulus, strength and strain of basalt fiber composites all increase with the increase of strain rate, and the increase range is 20%—60%; compared with glass fiber composites, basalt fiber composites exhibit higher elastic modulus, ultimate tensile strength and ultimate tensile strain under dynamic tensile conditions. However, at the present stage, researches on dynamic tensile properties of basalt fiber composites mainly focus on the lower range of about 100/s, and researches on dynamic compression properties are also extremely lacking, which makes it difficult to support the application of basalt fiber composites in service environments involving high-speed impact.
The ballistic performance of basalt fiber composites is roughly equivalent to that of S-glass fiber composites. Because of the comprehensive environmental adaptability of basalt fiber composites, it can strengthen the inherent shortcomings of other fibers when it is mixed with other fibers to form composites. The variation of the elastic resistance of basalt fiber composites is affected by the matrix and fiber, and is reflected in the diffe-rent failure mechanisms. However, it is difficult to capture the microstructural change of the material itself in the process of high speed dynamic impact, and the failure mechanism can only be inferred from the fracture morphology. Therefore, in the research of ballistic resistance, the analy-tical study of impact deformation process and failure mechanism of basalt fiber composites by simulation technology is in urgent need of attention.
The research progress of mechanical properties of basalt fiber reinforced resin matrix composites is summarized, and the research status of quasi-static, dynamic mechanical properties and ballistic properties are introduced respectively. The shortcomings in the research of mechanical properties of basalt fiber composites are analyzed and some suggestions are put forward. This review is expected to provide reference for the research and development of high performance and green basalt fiber composites.
Key words:  basalt fiber    composites    mechanical performances    ballistic performances
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TB332  
通讯作者:  wangyangwei@bit.edu.cn   
作者简介:  闫昭朴,2019年6月毕业于北京理工大学,获得工学学士学位。现为北京理工大学材料科学与工程专业硕士研究生,在王扬卫教授的指导下进行研究。目前主要研究领域为复合装甲防护材料。
王扬卫,北京理工大学材料学院教授、博士研究生导师。2000年7月本科毕业于北京理工大学机械工程与自动化学院,2005年9月在北京理工大学材料学专业取得博士学位,之后留校任教,2013年被聘为博士生导师。主要从事高速冲击载荷条件下的防护机理研究和高性能抗毁伤材料及结构的研制,包括材料抗毁伤机制、材料在高应变率载荷下的力学和微观组织响应规律、材料抗弹性能表征、装甲复合结构设计技术、高性能大尺寸陶瓷/金属复合材料研究等。发表相关学术论文六十多篇,授权发明专利14件。获国防科技创新团队奖1项,国防技术发明二等奖1项。
引用本文:    
闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
YAN Zhaopu, WANG Yangwei, ZHANG Yan, LIU Yifeng, CHENG Huanwu. Research Progress on Static and Dynamic Mechanical Properties and Ballistic Properties of Basalt Fiber Composites. Materials Reports, 2022, 36(4): 20110209-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110209  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20110209
1 Liu J X, Yang J P, Chen M R, et al. Thermochimica Acta, 2018, 660(1), 56.
2 Fiore V, Scalici T, Di Bella G, et al. Composites Part B: Engineering, 2015 (74), 74.
3 Hu X Q. Science & Technology Industry of China, 2018 (1), 77(in Chinese).
胡显奇.中国科技产业, 2018 (1), 77.
4 Jin Y X. Shandong Textile Science & Technology, 2010, 51(2), 37(in Chinese).
金友信.山东纺织科技, 2010, 51(2), 37.
5 Shi Q H. Fiber Glass, 2003 (4), 27(in Chinese).
石钱华.玻璃纤维, 2003 (4), 27.
6 Hu X Q. Hi-tech Fiber & Application, 2008, 33(6), 12(in Chinese).
胡显奇.高科技纤维与应用, 2008, 33(6), 12.
7 Li Z Z. Study on static and dynamic mechanical response of basalt fiber composite laminates. Master's Thesis, Southwest University of Science and Technology, China, 2017(in Chinese).
李祖湛. 玄武岩纤维复合材料层合板静、动态力学响应研究. 硕士学位论文, 西南科技大学, 2017.
8 Yang Z M, Liu J X, Feng X Y, et al. Transactions of Beijing Institute of Technology, 2018, 38(6), 655(in Chinese).
杨智明,刘金旭,冯新娅,等.北京理工大学学报,2018,38(6),655.
9 Liu J Q. Science & Technology Review, 2009, 27(9), 3(in Chinese).
刘嘉麒.科技导报, 2009, 27(9), 3.
10 Lopresto V, Leone C, Iorio I D. Composites Part B, 2011, 42(4), 717.
11 Dorigato A, Pegoretti A. Journal of Composite Materials, 2012, 46(15), 1773.
12 Chairman C A, Babu S P K. Journal of Applied Polymer Science, 2013, 130(1), 120.
13 Fiore V, Bella G D, Valenza A. Materials and Design, 2011, 32(4), 2091.
14 Wu Z, Wang X, Iwashita K, et al. Composites Part B, 2010, 41(5), 396.
15 Dorigato A, Pegoretti A. Journal of Composite Materials, 2014, 48(9), 1121.
16 Ferrante L, Sarasini F, Tirillò J, et al. Materials & Design, 2016, 98(15), 98.
17 Varley R J, Tian W, Leong K H, et al. Polymer Composites, 2013, 34(3), 320.
18 Ye G R, Yan Y W, Cao H L. Acta Materiae Compositae Sinica, 2014, 31(6), 1402(in Chinese).
叶国锐, 晏义伍, 曹海琳.复合材料学报, 2014, 31(6), 1402.
19 Kim M T, Kim M H, Rhee K Y, et al. Composites Part B, 2010, 42(3), 499.
20 Wang N. Investigation on fabrication and properties of modified lamellar boron nitride reinforced basalt fiber/epoxy resin composites. Master's Thesis, Southwest University of Science and Technology, China, 2020(in Chinese).
王楠. 改性片层氮化硼增强玄武岩纤维/环氧树脂复合材料的制备与性能研究. 硕士学位论文, 西南科技大学, 2020.
21 Hong X D, Yang D X, Deng E Y. Engineering Plastics Application, 2013, 41(2), 20(in Chinese).
洪晓东, 杨东旭, 邓恩燕.工程塑料应用, 2013, 41(2), 20.
22 Frankland S J V, Caglar A, Brenner D W, et al. The Journal of Physical Chemistry B, 2002, 106(12), 3046.
23 Paiva M C, Zhou B, Fernando K A S, et al. Composite Interfaces, 2005, 12(8), 757.
24 Kim M T, Rhee K Y, Park S J, et al. Composites Part B, 2012, 43(5), 2298.
25 Rhee K Y, Kim C J, Lee B H, et al. Journal of Nanoscience and Nanotechnology, 2013, 13(8), 5631.
26 Lee J H, Rhee K Y, Park S J. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010, 527(26), 6838.
27 Aghamohammadi H, Eslami F R, Tcharkhtchi A. International Journal of Adhesion and Adhesives, 2019, 98, 102538.
28 Wei C, Maria L. Composites Part A: Applied Science and Manufacturing, 2009, 40(8), 1082.
29 Shishevan F A, Akbulut H, Mohtadi-Bonab M A. Journal of Materials Engineering & Performance, 2017, 26(6), 2890.
30 Elmahdy A, Verleysen P. Polymer Testing, 2019, 76, 207.
31 Zhu L, Sun B, Gu B. Journal of Composite Materials, 2011, 46(11), 1285.
32 Gilat A, Goldberg R K, Roberts G D. Journal of Aerospace Engineering, 2007, 20(2), 75.
33 Littell J D, Ruggeri C R, Goldberg R K, et al. Journal of Aerospace Engineering, 2008, 21(3) 162.
34 Gerlach R, Siviour C R,Petrinic N. Polymer, 2008, 49(11), 2728.
35 Zhang H, Yao Y, Zhu D. Polymer Testing, 2016, 51, 29.
36 Yao Y, Zhu D, Zhang H. Journal of Materials in Civil Engineering, 2016, 28(9), 04016081.
37 Wang Y, Miao Y, Huang L, et al. International Journal of Impact Engineering, 2016, 97, 66.
38 Briscoe B J, Motamedi F. Wear, 1992, 158(1), 229.
39 Lu J, Zhu P, Ji A, et al. Polymers and Polymer Composites, 2017, 25, 289.
40 Naik N K, Yernamma P, Thoram N M, et al. Polymer Testing, 2010, 29(1), 14.
41 Zhu P, Lu J, Ji Q, et al. International Journal of Crashworthiness, 2016, 21(6), 1.
42 Ahmed E P V. Materials Today: Proceedings, 2020, 34(1), 171.
43 Elmahdy A, Verleysen P. Polymer Testing. 2020, 81, 106224.
44 Yang Z M. The preperation and protective performance optimization of basalt fiber cloth reinforced composite. Ph.D. Thesis, Beijing Institute of Technology, China, 2018(in Chinese).
杨智明. 玄武岩纤维布增强复合材料的制备及其防护性能优化研究. 博士学位论文, 北京理工大学, 2018.
45 Wang X L. Investigation on fabrication and mechanical properties of particle filled basalt fiber reinforced epoxy resin matrix composites. Master's Thesis, Beijing Institute of Technology, China, 2017(in Chinese).
王鑫磊. 颗粒掺杂玄武岩纤维增强环氧树脂基复合材料的制备与力学性能研究. 硕士学位论文, 北京理工大学, 2017.
46 Pan Z X, Sun B Z. Acta Materiae Compositae Sinica, 2015, 32(2), 395(in Chinese).
潘忠祥, 孙宝忠.复合材料学报, 2015, 32(2), 395.
47 Li Y J, Li F, Qu Y Z, et al. Engineering Plastics Application, 2011, 39(11), 26(in Chinese).
李英建, 李峰, 曲英章, 等.工程塑料应用, 2011, 39(11), 26.
48 Yang X B, Cheng X N. Fiber Reinforced Plastics/Composites, 2008(3), 27(in Chinese).
杨小兵, 程晓农.玻璃钢/复合材料, 2008(3), 27.
49 Li W, Zhu X, Wang X Q, et al. Journal of Vibration and Shock, 2009, 28(6), 52(in Chinese).
李伟, 朱锡, 王晓强, 等.振动与冲击, 2009, 28(6), 52.
50 Ha Y, Liu Z Y, Guan G S, et al. Chinese Journal of High Pressure Phy-sics, 2012, 26(5), 557(in Chinese).
哈跃, 刘志勇, 管公顺, 等.高压物理学报, 2012, 26(5), 557.
51 Ha Y, Guan G S, Chi R Q, et al. Chinese Journal of High Pressure Phy-sics, 2012, 26(3), 273(in Chinese).
哈跃, 管公顺, 迟润强, 等.高压物理学报, 2012, 26(3), 273.
52 Liu Z Y, Ha Y, Guan G S, et al. Spacecraft Environment Engineering, 2011, 28(4), 323(in Chinese).
刘志勇, 哈跃, 管公顺, 等.航天器环境工程, 2011, 28(4), 323.
53 Fu X. Hypervelocity impact characteristic investigation of the basalt fiber woven/Al-mesh combination protective structure. Master's Thesis, Harbin Institute of Technology, China, 2011(in Chinese).
傅翔. 玄武岩纤维布/铝丝网组合材料的空间碎片防护结构研究. 硕士学位论文, 哈尔滨工业大学, 2011.
54 Ha Y, Pang B J, Guan G S, et al. Journal of Harbin Institute of Techno-logy, 2007(5), 779(in Chinese).
哈跃, 庞宝君, 管公顺, 等.哈尔滨工业大学学报, 2007(5), 779.
55 Lin D L. Experimental research on penetration resistance of basalt fiber laminated plate. Master's Thesis, Lanzhou University, China, 2013(in Chinese).
林大路. 玄武岩纤维层合板抗侵彻性能试验研究. 硕士学位论文, 兰州大学, 2013.
56 Kong C F, Tian W, Liu S S, et al. Advanced Textile Technology, 2015, 23(4)(in Chinese).
孔春凤, 田伟, 刘双双, 等.现代纺织技术, 2015, 23(4), 20.
57 Yang Z, Liu J, Wang F, et al. Composite Structures, 2019, 229, 111434.
58 Li W, Li X D, Lu T Y, et al. China Plastics Industry, 2019, 47(10), 11(in Chinese).
李威, 李秀地, 芦天翊, 等.塑料工业, 2019, 47(10), 11.
[1] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[2] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[3] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[4] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[5] 王杨鑫, 邓强, 李成贵, 温永宇. 多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展[J]. 材料导报, 2022, 36(4): 20080197-10.
[6] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[7] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[8] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[9] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[10] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[11] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[12] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[13] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[14] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[15] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed