Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20100058-6    https://doi.org/10.11896/cldb.20100058
  无机非金属及其复合材料 |
利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能
谭洁慧1,2, 邓凌峰1,2,3, 张淑娴1,2, 李金磊1,2, 王壮1,2, 覃榕荣1,2
1 中南林业科技大学材料科学与工程学院,长沙 410004
2 中南林业科技大学材料表界面科学与技术湖南省重点实验室,长沙 410004
3 湖南烯能新材料有限公司,长沙 410205
Improving Performance of LiCoO2 Positive Material by Coating Micro Carbon Nanotubes in Collaboration with Graphene
TAN Jiehui1,2, DENG Lingfeng1,2,3, ZHANG Shuxian1,2, LI Jinlei1,2, WANG Zhuang1,2, QIN Rongrong1,2
1 School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
2 Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, Central South University of Forestry and Technology ,Changsha 410004, China
3 Hunan Xineng New Material Co., Ltd., Changsha 410205, China
下载:  全 文 ( PDF ) ( 6845KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用高温固相法制备钴酸锂(LiCoO2)正极材料,将碳纳米管(CNTs)、氧化石墨烯(GO)与LiCoO2超声分散,经喷雾干燥和高温还原后,氧化石墨烯被还原成石墨烯(GR),最终得到均匀分散的碳纳米管/石墨烯/钴酸锂(CNTs/GR/LiCoO2)复合正极材料。实验采用X射线衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)、透射电镜(TEM)以及电化学测试等方法,对材料的结构、形貌和电化学性能进行表征。实验结果表明,碳纳米管与石墨烯交替分散在LiCoO2颗粒表面,形成三维分层纳米级导电网络,能有效防止复合材料的团聚,与纯LiCoO2、GR/LiCoO2、CNTs/LiCoO2相比,CNTs/GR/LiCoO2复合材料表现出更优异的电化学性能,在0.5C时放电比容量为171.28 mAh/g,循环100次后放电比容量为154.50 mAh/g,容量保持率为90.24%,5C大倍率下放电比容量达到143.60 mAh/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭洁慧
邓凌峰
张淑娴
李金磊
王壮
覃榕荣
关键词:  碳纳米管  石墨烯  钴酸锂  协同包覆  复合材料  电化学性能    
Abstract: LiCoO2 positive material was prepared by high temperature solid phase method. Carbon nanotubes(CNTs), graphene oxide (GO) and LiCoO2 were dispersed by ultrasonic. Graphene(GR) were reduced by graphene oxide and CNTs/GR/LiCoO2 composite positive material was uniformly dispersed by spray drying and high temperature reduction. The structure, morphology and electrochemistry performance of the materials were characterized by XRD, FTIR, SEM, TEM and electrochemical measurement. The experimental results show that carbon nanotubes and graphene were alternately dispersed on the surface of LiCoO2 particles, to form a three-dimensional layered nanoscale conductive network, effectively preventing the reunion of composite material. Compared with pure LiCoO2, GR/LiCoO2 and CNTs/LiCoO2, the CNTs/GR/LiCoO2 composite shows better electrochemical properties, whose discharge specific capacity is 171.28 mAh/g at 0.5C, and 154.50 mAh/g after 100 cycles, the capacity retention rate is 90.24%, and the capacity reaches 143.60 mAh/g at 5C.
Key words:  carbon nanotubes    graphene    LiCoO2    collaborative coating    composite material    electrochemical performance
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TM912  
基金资助: 国家自然科学基金重点资助项目(31530009)
通讯作者:  denglingfeng168@126.com20100058-1   
作者简介:  谭洁慧,硕士,就读于中南林业科技大学理学院化学工程与技术专业,研究方向为锂离子电池正极材料方向。邓凌峰,中南林业科技大学材料科学与工程学院副教授,硕士研究生导师。近年来,承担了8余项省市及企业科研项目,发表论文60余篇,申请国家发明专利与实用新型专利69项,并且多项成果已产业化。主要研究方向:化学电源及电极材料和化工新材料,高分子功能材料,无机非金属功能材料。
引用本文:    
谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
TAN Jiehui, DENG Lingfeng, ZHANG Shuxian, LI Jinlei, WANG Zhuang, QIN Rongrong. Improving Performance of LiCoO2 Positive Material by Coating Micro Carbon Nanotubes in Collaboration with Graphene. Materials Reports, 2022, 36(2): 20100058-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100058  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20100058
1 Cheng Q X, Zhou J N, Ke C X, et al. Inorganic Chemistry, 2019, 58(18), 11993.
2 Cao J C, Hu G R, Peng Z D, et al. Journal of Power Sources, 2015, 281, 49.
3 He S Y, Wei A J, Li W, et al. Journal of Alloys and Compounds, 2019, 799, 137.
4 Luo S, Wang K, Wang J P, et al. Advanced Materials, 2012, 43(30), 2294.
5 Bourgeois J P, Vlad A, Melinte S, et al. Chinese Journal of Chemistry, 2016, 35(1), 41.
6 Ahn S,Nara H, Yokoshima T, et al. Materials Letters, 2019, 245, 200.
7 Lee E, Salgado R A, Lee B, et al. Carbon, 2018, 129, 702.
8 Han F C, Jiao X L, Chen D R, et al. Chemistry-An Asian Journal, 2017, 12(17), 2284.
9 Zhu W J, Huang H , Gan Y P, et al. Electrochimica Acta, 2014, 138, 376.
10 Chao D D, Wang L , Shen W Z, et al. Journal of Alloys and Compounds, 2019, 785, 557.
11 Cheng D D, Zhao Y L, Tang X W, et al. Carbon, 2019, 149, 750.
12 Tang C, Zhang Q, Zhao M Q, et al. Advanced Materials, 2014, 26(35), 6100.
13 Yuan C Z, Yang L, Hou L R, et al. Advanced Functional Materials, 2012, 22(12), 2560.
14 Wen L, Li F, Cheng H M. Advanced Materials, 2016, 28(22), 4306.
15 Lei X L, Zhang H Y, Chen Y M, et al. Journal of Alloys and Compounds, 2015, 626, 280.
16 Deng L F, Yu K M, Yan Z, et al. Acta Materiae Compositae Sinica, 2015, 32(5), 1390(in Chinese).
邓凌峰, 余开明, 严忠, 等.复合材料学报, 2015, 32(5), 1390.
17 Zhou X J, Zhang J L, Wu H X, et al. Journal of Physical Chemistry C, 2011, 115(24), 11957.
18 Bai L Z, Li F, Zhao D L.Materials Reports A:Review Papers, 2016, 30(5), 34(in Chinese).
白利忠, 李方, 赵东林. 材料导报:综述篇, 2016, 30(5), 34.
19 Song X, Ru Q, Mo Y D, et al. Journal of Power Sources, 2014, 269, 795.
20 Zhang Q B, Chen H X, Han X, et al. Chem Sus Chem, 2016, 9(2), 186.
21 Jiang Y, Jiang Z J, Yang L F, et al. Journal of Materials Chemistry A, 2015, 3(22), 11847.
22 Cheng C, Xiao F M, Wang Y, et al.Materials Reports A:Review Papers, 2019, 33(5), 3005(in Chinese).
程成, 肖方明, 王英, 等.材料导报:综述篇, 2019, 33(5), 3005.
23 Qiu X Y, Zhuang Q C, Zhang Q Q, et al. Physical Chemistry Chemical Physicss, 2012, 14(8), 2617.
24 Bae K Y, Cho S H, Kim B H, et al. Materials, 2019, 12(12), 2025.
[1] 张儒, 姜宁, 徐家川, 李迪. 植物纤维增强聚合物基复合材料湿热老化研究进展[J]. 材料导报, 2024, 38(2): 22030076-8.
[2] 杨张韬, 倪爱清, 王继辉, 冯雨薇. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 22110148-9.
[3] 吴智恒, 黄伊琳, 毕雁冰, 梁立喆, 归立发, 李卫庆, 沈培康, 田植群. 石墨烯及其衍生物改性沥青的研究进展[J]. 材料导报, 2024, 38(1): 22040410-9.
[4] 蔡锦文, 冯可芹, 王海波, 刘艳芳, 陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究[J]. 材料导报, 2024, 38(1): 22060277-6.
[5] 赵新涛, 姜宁, 王明道, 李骏腾, 李迪, 谭洪生. 纤维增强热塑性复合材料拉挤成型工艺研究进展[J]. 材料导报, 2024, 38(1): 22050237-9.
[6] 张永芳, 艾宇昕, 刘明, 黄艳斐, 周新远, 王海斗. 热固性树脂基复合材料在表面防护领域的研究现状[J]. 材料导报, 2024, 38(1): 22070052-9.
[7] 刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
[8] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[9] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[10] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[11] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[12] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[13] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[14] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[15] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed