Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22050237-9    https://doi.org/10.11896/cldb.22050237
  高分子与聚合物基复合材料 |
纤维增强热塑性复合材料拉挤成型工艺研究进展
赵新涛1, 姜宁1,*, 王明道1, 李骏腾2, 李迪1, 谭洪生3
1 山东理工大学交通与车辆工程学院,山东 淄博 255000
2 山东理工大学机械工程学院,山东 淄博 255000
3 山东理工大学材料科学与工程学院,山东 淄博 255000
Research Progress of Pultrusion Molding Process of Fiber Reinforced Thermoplastic Composites
ZHAO Xintao1, JIANG Ning1,*, WANG Mingdao1, LI Junteng2, LI Di1, TAN Hongsheng3
1 School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
2 School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
3 School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
下载:  全 文 ( PDF ) ( 35580KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 拉挤成型作为一种连续生产固定截面的热塑性复合材料成型工艺,具有原材料利用率高、生产效率高、废品率低、产品复制性强、可设计等优点,已在轻量化汽车、建筑建材、风电叶片等领域内广泛应用。热塑性树脂基体存在室温下呈固态、熔融状态下流动性差的问题,导致纤维浸渍困难,成为此类成型工艺发展的瓶颈,因此改进拉挤成型工艺的关键集中在纤维浸渍技术上。本文综述了纤维增强热塑性复合材料拉挤成型工艺的研究进展,并根据浸渍方式的不同将热塑性复合材料拉挤成型工艺分为非反应型拉挤成型工艺和反应型拉挤成型工艺,介绍了每种成型工艺的浸渍特点、制备流程以及工艺优化方案,阐述了拉挤成型工艺中不同的纤维浸渍方式对制件质量的影响规律,最后对拉挤成型工艺现存的问题进行了讨论,展望了未来纤维增强热塑性复合材料拉挤成型工艺的发展趋势,为今后拉挤成型工艺的深入研究和开拓创新提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵新涛
姜宁
王明道
李骏腾
李迪
谭洪生
关键词:  纤维增强  浸渍技术  成型工艺  拉挤成型  热塑性复合材料    
Abstract: As a thermoplastic composite molding process for continuous fixed-section composites production, pultrusion process has advantageous cha-racteristics including high raw material utilization rate, high production efficiency, low waste rate, strong replicability, designability, and has been widely used in the field of automotive lightweight designs, construction building materials, wind power blades and others. Thermoplastic resin matrix is a solid substance at room temperature and has poor fluidity in the molten state, so it is difficult to impregnate the fibers, which becomes the bottleneck of the development of pultrusion process. Therefore, the key to improve the pultrusion process is to focus on the fiber impregnation technology. This paper reviews the research progress of pultrusion process of fiber-reinforced thermoplastic composites. The pultrusion process is divided into non-reactive pultrusion and reactive pultrusion according to the different impregnation methods. The impregnation characteristics, manufacture processes and optimization scheme of each molding process are introduced. In addition, the influence law of diffe-rent fiber impregnation methods on the quality of the products in pultrusion process is expounded. Finally, the existing problems of pultrusion process are discussed, and the development trend of pultrusion process for fiber reinforced thermoplastic composites is prospected, which can provide guidance for further research and innovation of pultrusion process.
Key words:  fiber reinforcement    impregnation technology    molding process    pultrusion molding    thermoplastic composite
发布日期:  2024-01-16
ZTFLH:  TB332  
基金资助: 山东省自然科学基金青年项目(ZR2020QA040);科技部博士后基金( 2021M691853)
通讯作者:  姜宁,2018年于同济大学获得博士学位,现为山东理工大学交通与车辆工程学院讲师、硕士研究生导师。主要从事先进复合材料耐久性、复合材料高性能化、汽车轻量化技术及应用等研究工作。先后主持中国博士后基金1项、山东省自然科学基金项目1项,与企业合作完成多项横向课题,参与国家级科研项目3项。发表学术论文10余篇,其中被SCI检索论文8篇。jiangning@sdut.edu.cn   
作者简介:  赵新涛,2021年6月于盐城工学院获得工学学士学位。现为山东理工大学交通与车辆工程学院硕士研究生,在姜宁导师的指导下进行研究。目前主要研究领域为汽车轻量化技术及应用。
引用本文:    
赵新涛, 姜宁, 王明道, 李骏腾, 李迪, 谭洪生. 纤维增强热塑性复合材料拉挤成型工艺研究进展[J]. 材料导报, 2024, 38(1): 22050237-9.
ZHAO Xintao, JIANG Ning, WANG Mingdao, LI Junteng, LI Di, TAN Hongsheng. Research Progress of Pultrusion Molding Process of Fiber Reinforced Thermoplastic Composites. Materials Reports, 2024, 38(1): 22050237-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050237  或          http://www.mater-rep.com/CN/Y2024/V38/I1/22050237
1 Volk M, Wong J, Arreguin S, et al. Composites Part B: Engineering, 2021, 227, 109339.
2 Xu D M, Zhang X L, Jing T. Environmental Protection, 2019, 47(20), 54 (in Chinese).
许冬梅, 张兴林, 荆涛. 环境保护, 2019, 47(20), 54.
3 Sun Y B, Li H F, Zhang B M. Aeronautical Science & Technology, 2016, 27(5), 1 (in Chinese).
孙银宝, 李宏福, 张博明. 航空科学技术, 2016, 27(5), 1.
4 Zhou X L, Qian C X, Wang J G, et al. Hi-Tech Fiber and Application, 2004, 29(1), 41 (in Chinese).
周效谅, 钱春香, 王继刚, 等. 高科技纤维与应用, 2004, 29(1), 41.
5 Diez-Pascual A M, Naffakh M. Polymer, 2012, 53(12), 2369.
6 Liu D, Zhu Y, Ding J, et al. Composites Part B: Engineering, 2015, 77, 363.
7 Kudo K, Furutani M, Arimitsu K. ACS Macro Letters, 2015, 4(10), 1085.
8 Biron M. Thermoplastics and thermoplastic composites, William Andrew, UK, 2018, pp. 1.
9 Liu B, An W L, Ni N N. Aeronautical Manufacturing Technology, 2021, 64(22), 80 (in Chinese).
刘彬, 安卫龙, 倪楠楠. 航空制造技术, 2021, 64(22), 80.
10 Wang Z J, Zhou X D. Composites Science and Engineering, 2021(10), 120 (in Chinese).
王子健, 周晓东. 复合材料科学与工程, 2021(10), 120.
11 Mindermann P, Witt M U, Gresser G T. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106763.
12 Sandberg M, Yuksel O, Baran I, et al. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106231.
13 Song Y S, Youn J R, Gutowski T G. Composites Part A: Applied Science and Manufacturing, 2009, 40(8), 1257.
14 Epple S, Bonten C. In: International Conference of the Polymer Proces-sing Society. Nuremberg, 2013, pp. 454.
15 Gibson A G, Månson J A. Composites Manufacturing, 1992, 3, 223.
16 Kong Q B, Ding C R, Qiao X D. Fiber Composites, 2000(2), 35 (in Chinese).
孔庆宝, 丁传荣, 乔学东. 纤维复合材料, 2000(2), 35.
17 Minchenkov K, Vedernikov A, Safonov A, et al. Polymers (Basel), 2021, 13(2), 180.
18 Chen K, Xue P, Sun H, et al. China Plastics, 2019, 33(1), 116 (in Chinese).
陈轲, 薛平, 孙华, 等. 中国塑料, 2019, 33(1), 116.
19 Luisier A, Bourban P E, Månson J A E. Composites Part A: Applied Science and Manufacturing, 2003, 34(7), 583.
20 Yu J Y, Zhou Z F. Journal of Wuhan University of Technology, 1998, 20(4), 22 (in Chinese).
余剑英, 周祖福. 武汉工业大学学报, 1998, 20(4), 22.
21 Zou X P, Yi X S. Petrochemical Technology, 1996, 25(3), 194 (in Chinese).
邹湘坪, 益小苏. 石油化工, 1996, 25(3), 194.
22 Cai H P, Wang J, Duan H J. Composites Science and Engineering, 2003(2), 51 (in Chinese).
蔡浩鹏, 王钧, 段华军. 复合材料科学与工程, 2003(2), 51.
23 Jiang X W, Li J. Shandong Textile Science & Technology, 2003(1), 52 (in Chinese).
姜晓巍, 李静. 山东纺织科技, 2003(1), 52.
24 Chen B. Composites Science and Engineering, 2014(9), 34 (in Chinese).
陈博. 复合材料科学与工程, 2014(9), 34.
25 Ye D Q. Fiber Composites, 1999(16), 24 (in Chinese).
叶鼎铨. 纤维复合材料, 1999(16), 24.
26 Silva R F, Silva J F, Nunes J P, et al. Materials Science Forum, 2008, 587, 246.
27 Jiang W. Preparation and properties of continuous carbon fiber reinforced thermoplastic composites. Master’s Thesis, Huazhong University of Science and Technology, China, 2018 (in Chinese).
蒋维. 连续碳纤维增强热塑性复合材料制备与性能研究. 硕士学位论文, 华中科技大学, 2018.
28 Teng L H, Cao W W, Zhu B, et al. Journal of Materials Engineering, 2021, 49(2), 42 (in Chinese).
滕凌虹, 曹伟伟, 朱波, 等. 材料工程, 2021, 49(2), 42.
29 Liu B, Xu A, Bao L. Journal of Thermoplastic Composite Materials, 2015, 30(5), 724.
30 Wang Y, Wang X, Wu D. Composite Interfaces, 2016, 23(8), 743.
31 Yu S, Hwang Y H, Hwang J Y, et al. Composites Science and Technology, 2019, 175, 18.
32 Sommacal S, Matschinski A, Drechsler K, et al. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106487.
33 Budiyantoro C, Rochardjo H S B, Nugroho G. Machines, 2021, 9(2), 42.
34 Peltonen P, Lahteenkorva K, Paakkonen E J, et al. Journal of Thermoplastic Composite Materials, 1992, 5, 318.
35 Sun Y, Liu T H. China Rubber/Plastics Technology and Equipment, 2006, 32(6), 36 (in Chinese).
孙阳, 刘廷华. 橡塑技术与装备, 2006, 32(6), 36.
36 Irfan M S, Harris D, Paget M A, et al. Journal of Composite Materials, 2020, 55(1), 77.
37 Irfan M S, Shotton-Gale N, Paget M A, et al. Journal of Composite Materials, 2016, 51(13), 1925.
38 Akbar S, Ding C Y, Yousaf I, et al. Polymer Composites, 2008, 16, 19.
39 Goodman K E, Loos A C. Journal of Thermoplastic Composite Materials, 1990, 3, 34.
40 Cogswell F N, Staniland P A. U. S. patent, US4541884, 1985.
41 Parasnis N C, Ramani K, Borgaonkar H M. Composites Part A: Applied Science and Manufacturing, 1996, 27, 567.
42 Larson N, Rasnack W, Hoekstra N, et al. In: 2015 ASEE Annual Conference & Exposition. Washington, 2015, pp. 26.
43 Miller A H, Dodds N, Hale J M, et al. Composites Part A: Applied Science and Manufacturing, 1998, 29, 773.
44 Ramani K, Borgaonkar H, Hoyle C. Composites Manufacturing, 1995, 6, 35.
45 Sala G, Cutolo D. Composites Part A: Applied Science and Manufactu-ring, 1997, 28, 637.
46 Haffner S M, Friedrich K, Hogg P J, et al. Composites Science and Technology, 1998, 58, 1371.
47 Safonov A A, Carlone P. Composite Structures, 2018, 184, 153.
48 Connor M, Toll S, Månson J A E, et al. Journal of Thermoplastic Composite Materials, 2016, 8(2), 138.
49 Kerbiriou V, Friedrich K. Journal of Thermoplastic Composite Materials, 1999, 12, 96.
50 Novo P J, Silva J F, Nunes J P, et al. Composites Part B: Engineering, 2016, 89, 328.
51 Lapointe F, Laberge L L. Polymer Composites, 2018, 40(S2), 1015.
52 Kim D H, Lee W I, Friedrich K. Composites Science and Technology, 2001, 61, 1065.
53 Nayana V, Kandasubramanian B. Polymer Testing, 2020, 91, 106774.
54 Svensson N, Shishoo R, Gilchrist M. Journal of Thermoplastic Composite Materials, 2016, 11(1), 22.
55 Ghaedsharaf M, Brunel J E, Laberge L L. Composites Part A: Applied Science and Manufacturing, 2021, 150, 106637.
56 Ananthakrishnan V A. Pultrusion of commingled thermoplastic composite materials. Master’s Thesis, University of Nevada, USA, 2000.
57 Mader E. Scientific Journal of the Technical University of Dresden, 1997, 46, 20.
58 Ghaedsharaf M, Brunel J E, Lebel L L. Composites Part B: Engineering, 2021, 218, 108938.
59 Ishida H, Zimmerman D A. Polymer Composites, 1994, 15, 93.
60 Ageyeva T, Sibikin I, Karger-Kocsis J. Polymers (Basel), 2018, 10, 357.
61 Ning X, Ishida H. Polymer Engineering & Science, 1991, 31, 632.
62 Li Z W, Sun B H, Wang H. Fiber Composites, 1996(2), 7 (in Chinese).
李泽文, 孙宝华, 王辉. 纤维复合材料, 1996(2), 7.
63 Chen K, Jia M, Hua S, et al. Journal of Polymer Research, 2019, 26(2), 1.
64 Van-Rijswijk K, Bersee H E N. Composites Part A: Applied Science and Manufacturing, 2007, 38(3), 666.
65 Babeau A, Comas-Cardona S, Binetruy C, et al. Composites Part A: Applied Science and Manufacturing, 2015, 77, 310.
66 Chen K, Jia M, Sun H, et al. Materials (Basel), 2019, 12 (3), 463.
67 Kim B J, Cha S H, Park Y B. Composites Part B: Engineering, 2018, 143, 36.
68 Jeswani A L, Roux J A. Journal of Manufacturing Science and Enginee-ring, 2010, 132, 021007.
69 Gong M, Zhang D J, Liu Y F, et al. Materials Reports, 2020, 34(21), 21180 (in Chinese).
龚明, 张代军, 刘燕峰, 等. 材料导报, 2020, 34(21), 21180.
70 Ding X, He Q, Yang Q, et al. Polymers (Basel), 2022, 14(4), 666.
71 Suratno B R, Ye L, Mai Y W. Composites Science and Technology, 1998, 58, 191.
72 Vedernikov A, Nasonov Y, Korotkov R, et al. Journal of Composite Materials, 2021, 55(21), 2921.
73 Liu X L, Crouch I G, Lam Y C. Composites Science and Technology, 2000, 60, 857.
74 Epple S, Bonten C. In: Polymer Processing Society. Akron, 2015, pp. 1779.
75 Zoller A, Escalé P, Gérard P. Frontiers in Materials, 2019, 6, 290.
76 Kaczmarek D, Walczyk D, Garofalo J, et al. Journal of Manufacturing Processes, 2021, 64, 972.
77 Chiang C L, Chen C H. Journal of Reinforced Plastics and Composites, 2016, 35, 1554.
78 Abt T, Sánchez-Soto M, De Ilarduya A M. European Polymer Journal, 2012, 48(1), 163.
79 Abt T, Sánchez-Soto M. Critical Reviews in Solid State and Materials Sciences, 2017, 42(3), 173.
80 Obande W, Ó Brádaigh C M, Ray D. Composites Part B: Engineering, 2021, 215, 108771.
81 Masri M N, Mohd S, Bakar A, et al. International Journal of Integrated Engineering, 2021, 13(4), 172.
82 Thieleke P, Bonten C. In: Polymer Processing Society. Akron, 2019, pp. 2289.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[3] 秦唯铭, 杜冰, 朱绍伟, 陈立明, 李卫国, 樊振华. 环境温度对长玻纤增强聚丙烯单向拉伸力学性能的影响[J]. 材料导报, 2023, 37(20): 22030014-6.
[4] 冉旭东, 黄树海, 张鹏, 韩振宇, 周少兰, 陈强. 连续纤维增强复合材料点阵结构成型工艺研究进展[J]. 材料导报, 2023, 37(19): 22020059-12.
[5] 陈阳, 胡翔, 吴泽媚, 史才军. 海洋环境下FRP增强混凝土构件结构劣化和性能退化的研究综述[J]. 材料导报, 2023, 37(18): 21120052-11.
[6] 关洪达, 张涛, 何新波. C/SiC陶瓷基复合材料研究与应用现状[J]. 材料导报, 2023, 37(16): 21090178-10.
[7] 王景东, 潘静雯, 张芝芳, 江剑, 黎健斌. CFRP层合板的二次低速冲击及剩余压缩强度试验研究[J]. 材料导报, 2023, 37(12): 21100084-8.
[8] 相泽辉, 王俊, 牛建刚, 周杰. FRP约束混凝土关键问题综述[J]. 材料导报, 2023, 37(1): 20110045-8.
[9] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[10] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[11] 肖昌伟, 李文晓. 树脂传递模塑成型工艺复合材料孔隙表征和孔隙形成预测研究进展[J]. 材料导报, 2022, 36(23): 21100167-7.
[12] 秦若森, 孙守政, 韩振宇, 张鹏, 富宏亚. 3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17): 21010246-9.
[13] 王晨宇, 韦经杰, 龙武剑, 董必钦. 纤维取向分布对水泥基复合材料力学性能的影响及其评价方法的研究进展[J]. 材料导报, 2022, 36(15): 20120133-13.
[14] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[15] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed