Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21100084-8    https://doi.org/10.11896/cldb.21100084
  高分子与聚合物基复合材料 |
CFRP层合板的二次低速冲击及剩余压缩强度试验研究
王景东1, 潘静雯1,2, 张芝芳1,*, 江剑1, 黎健斌1
1 广州大学风工程与工程振动研究中心,广州 510006
2 广州大学土木工程学院,广州 510006
Experimental Investigation on CFRP Laminates Subjected to Repeated Low-velocity Impact and Compression After Impact
WANG Jingdong1, PAN Jingwen1,2, ZHANG Zhifang1,*, JIANG Jian1, LI Jianbin1
1 Research Center for Wind Engineering and Engineering Vibration, Guangzhou University, Guangzhou 510006, China
2 School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
下载:  全 文 ( PDF ) ( 14518KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以碳纤维增强复合材料(Carbon fiber reinforced polymer,CFRP)层合板为研究对象,在结构的相同位置进行二次低速冲击,考察二次冲击时结构的动力响应和冲击后的剩余压缩强度,并与单次冲击的结果进行对比。在总冲击能量相同的前提下,采用落锤法对CFRP层合板进行冲击试验,得到结构单次和二次冲击的动力响应、能量吸收规律。采用超声波C扫描技术观测CFRP层合板内部的冲击损伤后,对CFRP层合板进行剩余压缩强度试验。系统研究和对比了单次和二次冲击对CFRP层合板在结构动力响应、能量吸收、损伤情况和剩余强度的影响。结果表明:总冲击能量分别为20 J、30 J、40 J时,二次冲击层合板试件吸收的总能量分别是单次冲击的52.50%、67.56%、81.41%,损伤总面积分别是单次冲击的60.58%、64.59%、80.60%;单次冲击后结构的剩余压缩强度分别是二次冲击的76.76%、78.65%、92.40%。此外,CAI-冲击能量、CAI-吸收能量和CAI-损伤面积曲线均在20 J的冲击能量下存在拐点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王景东
潘静雯
张芝芳
江剑
黎健斌
关键词:  纤维增强复合材料  二次低速冲击  剩余压缩强度  动力响应  能量吸收    
Abstract: Taking carbon fiber reinforced polymer (CFRP) laminates as the research object, the repeated low-velocity impact was carried out at the same position of the CFRP laminates. The dynamic response and residual compressive strength of the CFRP laminates were investigated and compared with the results of one-time impact. Applying the same total impact energy for one-time and repeated impact, the impact testing of CFRP laminates was carried out by drop weight method, and the dynamic response and energy absorption law of one-time and repeated impact were obtained. After the impact damage inside the laminates was detected by ultrasonic C-scanning technology, the residual compressive strength testing of CFRP laminates was carried out. In this work, the effects of one-time impact and repeated impact on the structural dynamic response, energy absorption, induced damage and residual strength of CFRP laminates were systematically studied and compared. The results show that under the same total impact energy of 20 J, 30 J and 40 J, the energy absorbed in repeated impact is 52.50%, 67.56% and 81.41% of that in one-time impact, respectively, and that the damaged area for repeated impact is 60.58%, 64.59% and 80.60% of that in one-time impact, respectively, while the residual compressive strength for one-time impact is correspondingly 76.76%, 78.65% and 92.40% of that in repeated impact, respectively. Moreover, the curves of CAI-impact energy, CAI-absorbed energy and CAI-damaged area have the same turning point at the impact energy of 20 J.
Key words:  fiber reinforced composite material    repeated low-velocity impact    residual compressive strength    dynamic response    energy absorption
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TB332  
基金资助: 广东省自然科学基金(2019A1515011116);高等学校学科创新引智计划(111计划)(D21021);广州市科技计划项目(20212200004)
通讯作者:  * 张芝芳,广州大学风工程与工程振动研究中心副研究员、硕士研究生导师。2007年6月本科毕业于华南理工大学高分子材料与工程专业,2013年12月博士毕业于澳大利亚新南威尔士大学机械工程专业。长期从事纤维增强复合材料(FRP)的损伤识别和结构健康监测、复合材料疲劳寿命的预测以及复合材料的低速冲击和冲击后性能等方面的研究。主持国家自然科学基金1项和广东省自然科学基金3项,公开发表学术论文40余篇,其中SCI/EI收录20余篇,1篇入选ESI高被引论文,获专利和软件著作权5项,入选广州市高层次人才。zfzhang@gzhu.edu.cn   
作者简介:  王景东,2019年6月毕业于广州大学,获得工学学士学位。现为广州大学土木工程学院硕士研究生,主要从事复合材料层合板的多次低速冲击和冲击后压缩性能的研究。
引用本文:    
王景东, 潘静雯, 张芝芳, 江剑, 黎健斌. CFRP层合板的二次低速冲击及剩余压缩强度试验研究[J]. 材料导报, 2023, 37(12): 21100084-8.
WANG Jingdong, PAN Jingwen, ZHANG Zhifang, JIANG Jian, LI Jianbin. Experimental Investigation on CFRP Laminates Subjected to Repeated Low-velocity Impact and Compression After Impact. Materials Reports, 2023, 37(12): 21100084-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100084  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21100084
1 Chen P, Yu Q, Lu C. Fiber Composites, 2005, 22(1), 53 (in Chinese).
陈平, 于祺, 路春. 纤维复合材料, 2005, 22(1), 53.
2 Cao H J, Qian K, Wei Q F, et al. Fiber Reinforced Plastics/Composites, 2010(5), 11 (in Chinese).
曹海建, 钱坤, 魏取福, 等. 玻璃钢/复合材料, 2010(5), 11.
3 Jiang J, Zhang Z, Fu J, et al. Aerospace Science and Technology, 2023, 137, 108267.
4 Chen F, Yao W X, Wu F Q. Materials Reports, 2020, 34(20), 20130 (in Chinese).
陈方, 姚卫星, 吴富强. 材料导报, 2020, 34(20), 20130.
5 Wang S, Lai J M, Ruan J Q, et al. Materials Reports, 2021, 35(2), 2178 (in Chinese).
王森, 赖家美, 阮金琦, 等. 材料导报, 2021, 35(2), 2178.
6 Andrew J J, Srinivasan S M, Arockiarajan A, et al. Composite Structures, 2019, 224, 1.
7 Caputo F, Luca A, Sepe R. Composites Part B:Engineering, 2015, 79, 456.
8 Cheng Z, Xiong J. Chinese Journal of Aeronautics, 2020, 33(10), 2807.
9 Liu H B, Falzon B G, Tan W. Composites Part A:Applied Science and Manufacturing, 2018, 105, 189.
10 Guo J J. Study on low-velocity impact and compression failure of composite sandwich plate. Master’s Thesis, Dalian University of Technology, China, 2019 (in Chinese).
郭静静. 复合材料夹层板低速冲击及压缩失效研究. 硕士学位论文, 大连理工大学, 2019.
11 Long S C. Study on low-velocity impact damage and residual strength of composites with initial defects. Master’s Thesis, South China University of Technology, China, 2014 (in Chinese).
龙舒畅. 含初始缺陷复合材料的低速冲击损伤与剩余强度研究. 硕士学位论文, 华南理工大学, 2014.
12 Zhou J J, Wen P H, Wang S N. Composites Part B:Engineering, 2020, 185, 107771.
13 Li L, Sun L, Wang T, et al. Aerospace Science and Technology, 2019, 84, 995.
14 Rajkumar G R, Krishna M, Murthy H, et al. Journal of Materials Engineering and Performance, 2012, 21(7), 1485.
15 Liao B B, Zhou J W, Li Y, et al. International Journal of Mechanical Sciences, 2020, 182, 105783.
16 Azouaoui K, Azari Z, Pluvinage G. International Journal of Fatigue, 2010, 32(2), 443.
17 Sevkat E, Llaw B, Delale F, et al. Composites Part A:Applied Science and Manufacturing, 2010, 41(5), 403.
18 Guo K L, Zhu L, Li Y G, et al. Composite Structures, 2018, 200, 298.
19 Zu Z, Yuan T Y, Tang S S, et al. Science Technology and Engineering, 2019, 19(28), 101 (in Chinese).
俎政, 原天宇, 汤双双, 等. 科学技术与工程, 2019, 19(28), 101.
20 Onur, B, Onur C, Mustafa O B, et al. Materials Science and Enginee-ring:A, 2017, 682, 23.
21 ASTM D7137/D7137M-2012. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates, ASTM, 2012.
22 Shyr T W, Pan Y H. Composite Structures, 2003, 62(6), 193.
23 Sun Z H, Li C, Tie Y. Materials & Design, 2021, 202, 109540.
24 Liu J, He W, Xie D, et al. Composites Part B:Engineering, 2017, 111, 315.
25 Wang S Q, Dong S L, Gao Y, et al. Materials & Design, 2016, 115, 213.
26 Yudhanto A, Wafai G, Lubineau S, et al. Composite Structures, 2019, 210, 239.
27 Wang X M, Chen L, Jiao W, et al. Materials Reports, 2020, 34(14), 14191 (in Chinese).
王心淼, 陈利, 焦伟, 等. 材料导报, 2020, 34(14), 14191.
28 Zhu W Y, Xu X W. Acta Materiae Compositae Sinica, 2012, 29(5), 171 (in Chinese).
朱炜垚, 许希武. 复合材料学报, 2012, 29(5), 171.
29 Shen Z, Yang S C, Chen P H. Acta Materiae Compositae Sinica, 2008(5), 125 (in Chinese).
沈真, 杨胜春, 陈普会. 复合材料学报, 2008(5), 125.
[1] 刘雄飞, 和西民. 低应变率荷载作用下梯度泡沫铝力学性能研究[J]. 材料导报, 2023, 37(7): 22010266-7.
[2] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[3] 相泽辉, 王俊, 牛建刚, 周杰. FRP约束混凝土关键问题综述[J]. 材料导报, 2023, 37(1): 20110045-8.
[4] 邓云飞, 安静丹, 任光辉, 魏刚. 铝合金圆波纹夹芯板对半球形体的低速冲击响应特性及失效机制[J]. 材料导报, 2022, 36(24): 21080249-6.
[5] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[6] 于冬雪, 于化杰, 黎红兵, 梁爽. FRP建筑材料的结构性能及应用综述[J]. 材料导报, 2021, 35(z2): 660-66.
[7] 杨鑫, 马文君, 王岩, 刘世锋, 张兆洋, 王婉琳, 王犇, 汤慧萍. 增材制造金属点阵多孔材料研究进展[J]. 材料导报, 2021, 35(7): 7114-7120.
[8] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[9] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[10] 谢桂华, 孙悦, 严鹏, 刘炀, 翁煜. 湿/热条件下的CFRP筋粘结型锚具性能研究[J]. 材料导报, 2020, 34(22): 22178-22184.
[11] 陈方, 姚卫星, 吴富强. 复合材料T型加筋低速边缘冲击及剩余压缩强度的数值仿真分析[J]. 材料导报, 2020, 34(20): 20130-20136.
[12] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[13] 杨荣周, 徐颖, 陈佩圆. 养护湿度对橡胶水泥砂浆动态压缩破坏特征及能量耗散的影响[J]. 材料导报, 2020, 34(14): 14070-14078.
[14] 刘洋, 庄蔚敏, 解东旋. 纤维增强复合材料与铝合金自冲铆接研究进展[J]. 材料导报, 2020, 34(11): 11053-11063.
[15] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed