Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21090297-7    https://doi.org/10.11896/cldb.21090297
  金属与金属基复合材料 |
TNM-TiAl合金室温高周疲劳性能研究
孙冠泽1,2, 曹睿1,2,*, 周鑫1,2, 王红卫3,4
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
3 北京钢研高纳科技股份有限公司,北京 100081
4 钢铁研究总院高温合金新材料北京市重点实验室,北京 100081
Study on High Cycle Fatigue Properties of TNM-TiAl Alloy at Room Temperature
SUN Guanze1,2, CAO Rui1,2,*, ZHOU Xin1,2, WANG Hongwei3,4
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3 Beijing CISRI-Gaona Materials Technology Co., Ltd., Beijing 100081, China
4 Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China
下载:  全 文 ( PDF ) ( 13654KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用升降法与成组法对TNM-TiAl合金试样进行了应力比R=-1的室温拉压疲劳和R=0.1的室温拉伸疲劳试验,得到TNM-TiAl合金的P-S-N曲线,并对断口进行了分析。结果表明:TNM-TiAl合金对应力十分敏感,R=-1和R=0.1时的曲线整体呈较为平直的斜线,R=-1时的疲劳极限为414.7 MPa,R=0.1时的疲劳极限为285.6 MPa。R=0.1的S-N曲线远低于R=-1的S-N曲线;R=-1时,应力幅与疲劳寿命的关系满足Basquin方程。疲劳试件宏观断口较为粗糙,静态拉伸宏观断口平整,两者差异较大。拉伸断口整体分为裂纹萌生区与扩展区,其中起裂源均位于试样表面或板状试件的边角棱线处,起裂源区域包括γ相的解理断裂面、片层团的沿层解理面以及β0相平整的穿晶断裂平面等特征。疲劳断口整体分为裂纹萌生区、扩展区与瞬断区,其中裂纹萌生区分为表面沿层起裂和γ相起裂。TNM-TiAl合金的疲劳断裂为脆性断裂,主要体现在扩展区上大量的片层团穿层断裂、扭折撕裂、γ相解理断裂和β0相穿晶断裂。同寿命量级下,R=-1的断口与R=0.1的断口断裂类型相似,但R=-1的断口萌生区与扩展区更加平整。90%疲劳寿命中断试件未出现微裂纹,证明疲劳寿命主要体现在裂纹的萌生,而裂纹扩展的寿命占比不到总寿命的10%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙冠泽
曹睿
周鑫
王红卫
关键词:  高周疲劳  TNM-TiAl合金  P-S-N曲线  疲劳断裂机理  应力比    
Abstract: Tensile and compressive fatigue tests at stress ratio R=-1 and tensile fatigue tests at R=0.1 were carried out on TNM-TiAl alloy samples using up-and-down method and group method.The P-S-N curve of TNM-TiAl alloy was obtained and the fracture surface was analyzed.The results show that TNM-TiAl alloy is very sensitive to stress.P-S-N curve present a relatively flat oblique line at R=-1 and R=0.1.The fatigue limit at R=-1 and R=0.1 was 414.7 MPa and 285.6 MPa, respectively.The S-N curve at R=0.1 is much lower than that at R=-1.The relationship between the stress amplitude and fatigue life at R=-1 satisfies Basquin equation.The macroscopic fracture surface of fatigue specimen with rough feature is quite different from that of static-tensile specimen with flat feature.The tensile fracture surface is composed of initiation zone and propagation zone.The initiation zone is located at the corner and edge of the specimen surface or plate specimen, and composed of cleavage fracture surface at γ phase, interlamellar fracture surface at lamellar colonies and flat transgranular cleavage fracture surface at β0 phase. The fatigue fracture surface is composed of crack initiation zone, crack propagation zone, and final fast fracture zone.The fatigue fracture initiation zone includes two types of interlamellar interface cracking and γ phase cracking.The brittle fracture feature dominates the fatigue fracture, which is mainly reflected in a large number of transgranular fracture and kink tear of lamellar clusters,cleavage fracture of γ phase and transgranular fracture of β0 phase in the propagation zone.The fracture type at R=-1 is similar to that at R=0.1 under the same life scale, but the initiation zone and propagation zone at R=-1 are smoother.No microcracks were found in the unloaded specimens with a fatigue life of 90%, which indicates that the fatigue life is mainly determined by crack initiation.The life of crack propagation is less than 10% of the total life.
Key words:  high cycle fatigue    TNM-TiAl alloy    P-S-N curve    fatigue fracture mechanism    stress ratio
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TG111.8  
基金资助: 国家自然科学基金(52175325;51961024;52071170);甘肃省教育厅“双一流”科研重点项目(GSSYLXM-03)
通讯作者:  * 曹睿,兰州理工大学,博士、教授、博士研究生导师。2003年6月兰州理工大学材料科学与工程学院毕业,并参加工作至今。主要从事新材料和异种材料的焊接性、强韧性、腐蚀、变形、损伤及断裂行为研究等科研工作。发表SCI检索论文80余篇,发表中文核心期刊论文100余篇。caorui@lut.edu.cn   
作者简介:  孙冠泽,2019年6月于石家庄铁道大学获得工学学士学位。现为兰州理工大学材料科学与工程学院硕士研究生,在曹睿教授的指导下进行研究。目前主要研究领域为高温合金的疲劳与断裂。
引用本文:    
孙冠泽, 曹睿, 周鑫, 王红卫. TNM-TiAl合金室温高周疲劳性能研究[J]. 材料导报, 2023, 37(12): 21090297-7.
SUN Guanze, CAO Rui, ZHOU Xin, WANG Hongwei. Study on High Cycle Fatigue Properties of TNM-TiAl Alloy at Room Temperature. Materials Reports, 2023, 37(12): 21090297-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090297  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21090297
1 Kim Y W. Journal of Metals, 1995, 47(7), 39.
2 Yang R. Acta Metallurgica Sinica, 2015, 51(2), 129(in Chinese).
杨锐. 金属学报, 2015, 51(2), 129.
3 Zhang J, Feng R C, Yao Y J, et al. Materials Reports, 2023(6), 21080280(in Chinese).
张隽, 冯瑞成, 姚永军, 等. 材料导报, 2023(6), 21080280.
4 Kou P P, Feng R C, Li H Y, et al. Materials Reports, 2021, 35(10), 10114(in Chinese).
寇佩佩, 冯瑞成, 李海燕, 等. 材料导报, 2021, 35(10), 10114.
5 Song Q G, Dong S S, Hu Y, et al. Materials Reports, 2021, 35(2), 2057(in Chinese).
宋庆功, 董珊珊, 胡烨, 等. 材料导报, 2021, 35(2), 2057.
6 Bewlay B P, Nag S, Suzuki A, et al. Materials at High Temperatures, 2016, 33, 549.
7 Habel U, Heutling F, Kunze C, et al. In: Proceeding of the 13th World Conference on Titanium, USA, 2016, pp.1223.
8 Wright P K, Jain M, Cameron D. In:Superalloys 2004. USA, 2004, pp.657.
9 Liu E Z, Zheng Z, Tong J, et al. Acta Metallurgica Sinica, 2010, 46(6), 708(in Chinese).
刘恩泽, 郑志, 佟健, 等. 金属学报, 2010, 46(6), 708.
10 Yamabe-Mitarai Y, Ro Y, Maruko T, et al. In: Structural Intermetallics. Warrendale, 1997, pp.313.
11 Kou P P, Feng R C, Li H Y, et al. Materials Reports, 2020, 34(14), 14140(in Chinese).
寇佩佩, 冯瑞成, 李海燕, 等. 材料导报, 2020, 34(14), 14140.
12 Clemens H, Chladil H F, Wallgram W, et al. Intermetallics, 2008, 16(6), 827.
13 Tetsui T, Shindo K, Kobayashi S, et al. Scripta Materialia, 2002, 47(6), 399.
14 Schwaighofer E, Clemens H, Mayer S, et al. Intermetallics, 2014, 44, 128.
15 Tetsui T, hindo K, Kaji S, et al. Intermetallics, 2005, 13(9), 971.
16 Voisin T, Monchoux J P, Hantcherli M, et al. Acta Materialia, 2014, 73, 107.
17 Liu X F, Liu D, Lui R C, et al. Acta Metallurgica Sinica, 2020, 56(7), 53(in Chinese).
刘先锋, 刘冬, 刘仁慈, 等. 金属学报, 2020, 56(7), 53.
18 GB/T 24176-2009, 金属材料 疲劳试验 数据统计方案与分析方法, 中国标准出版社, 2009.
19 Kumpfert J, Kim Y W, Dimiduk D M. Materials Science & Engineering A, 1995, s192-193(part-P1), 465.
20 Sastry S, Lipsitt H A. Metallurgical and Materials Transactions A, 1977, 8(2), 299.
21 Boettner R C, Stoloff N S, Davies R G. Aime Met Soc Trans, 1966, 236(1), 131.
22 Ham R K. Canadian Matal Quarterly, 1966, 5(3), 161.
23 Filippini M, Beretta S, Patriarca L, et al. In: International Symposium on Gamma TiAl Alloys. USA, 2014, pp.87.
24 Wan W J, Han W, Zhang J. Materials Reports, 2014, 28(23), 8(in Chinese).
万文娟, 韩伟, 张继. 材料导报, 2014, 28(23), 8.
25 Jha S K, Larsen J M, Rosenberger A H. Acta Materialia, 2005, 53(5), 1293.
26 Li R, Qu H X, Chun Q. Journal of Jinling Institute of Technology, 2005(3), 17(in Chinese).
李荣, 邱洪兴, 淳庆. 金陵科技学院学报, 2005(3), 17.
27 Lin Y Z, Zhou S Q, Cao R, et al. Materials for Mechanical Engineering, 2013, 37(10), 25(in Chinese).
林有智, 周少秋, 曹睿, 等. 机械工程材料, 2013, 37(10), 25.
28 Cao R, Chen J H, Zhang J, et al. Rare Metal Materials and Engineering, 2005(5), 696(in Chinese).
曹睿, 陈剑虹, 张继, 等. 稀有金属材料与工程, 2005(5), 696.
[1] 吴省均, 陈跃良, 张勇, 卞贵学, 张杨广, 王安东, 张柱柱. 腐蚀条件下高强钢超高周疲劳性能及损伤机理研究进展[J]. 材料导报, 2023, 37(12): 21040055-11.
[2] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[3] 高旭东, 邵永波, 郭永健, 钟颖, 罗霞飞. 应力比对服役后X56钢腐蚀疲劳裂纹扩展速率的影响[J]. 材料导报, 2022, 36(15): 21040303-6.
[4] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[5] 赵清晨, 王金龙, 张元良, 沈毅鸿, 刘淑杰. 不同加载频率下FV520B-I的疲劳行为与疲劳寿命[J]. 材料导报, 2018, 32(16): 2837-2841.
[6] 何柏林,金辉,张枝森,谢学涛,丁江灏. SMA490BW钢对接接头高周疲劳性能的机理探究[J]. 《材料导报》期刊社, 2018, 32(12): 2008-2014.
[7] 高古辉, 陈倩如, 郭浩冉, 程骋, 白秉哲. 贝/马复相钢超高周疲劳行为及非夹杂起裂*[J]. 《材料导报》期刊社, 2017, 31(20): 48-52.
[8] 吕宗敏, 何柏林, 于影霞. 超声冲击对高速列车转向架焊接十字接头超高周疲劳性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 77-81.
[9] 周磊, 宋亚南, 王海斗, 李国禄, 张建军. 超高周疲劳的影响因素及疲劳机理的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 84-89.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed