Study on High Cycle Fatigue Properties of TNM-TiAl Alloy at Room Temperature
SUN Guanze1,2, CAO Rui1,2,*, ZHOU Xin1,2, WANG Hongwei3,4
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China 3 Beijing CISRI-Gaona Materials Technology Co., Ltd., Beijing 100081, China 4 Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China
Abstract: Tensile and compressive fatigue tests at stress ratio R=-1 and tensile fatigue tests at R=0.1 were carried out on TNM-TiAl alloy samples using up-and-down method and group method.The P-S-N curve of TNM-TiAl alloy was obtained and the fracture surface was analyzed.The results show that TNM-TiAl alloy is very sensitive to stress.P-S-N curve present a relatively flat oblique line at R=-1 and R=0.1.The fatigue limit at R=-1 and R=0.1 was 414.7 MPa and 285.6 MPa, respectively.The S-N curve at R=0.1 is much lower than that at R=-1.The relationship between the stress amplitude and fatigue life at R=-1 satisfies Basquin equation.The macroscopic fracture surface of fatigue specimen with rough feature is quite different from that of static-tensile specimen with flat feature.The tensile fracture surface is composed of initiation zone and propagation zone.The initiation zone is located at the corner and edge of the specimen surface or plate specimen, and composed of cleavage fracture surface at γ phase, interlamellar fracture surface at lamellar colonies and flat transgranular cleavage fracture surface at β0 phase. The fatigue fracture surface is composed of crack initiation zone, crack propagation zone, and final fast fracture zone.The fatigue fracture initiation zone includes two types of interlamellar interface cracking and γ phase cracking.The brittle fracture feature dominates the fatigue fracture, which is mainly reflected in a large number of transgranular fracture and kink tear of lamellar clusters,cleavage fracture of γ phase and transgranular fracture of β0 phase in the propagation zone.The fracture type at R=-1 is similar to that at R=0.1 under the same life scale, but the initiation zone and propagation zone at R=-1 are smoother.No microcracks were found in the unloaded specimens with a fatigue life of 90%, which indicates that the fatigue life is mainly determined by crack initiation.The life of crack propagation is less than 10% of the total life.
孙冠泽, 曹睿, 周鑫, 王红卫. TNM-TiAl合金室温高周疲劳性能研究[J]. 材料导报, 2023, 37(12): 21090297-7.
SUN Guanze, CAO Rui, ZHOU Xin, WANG Hongwei. Study on High Cycle Fatigue Properties of TNM-TiAl Alloy at Room Temperature. Materials Reports, 2023, 37(12): 21090297-7.
1 Kim Y W. Journal of Metals, 1995, 47(7), 39. 2 Yang R. Acta Metallurgica Sinica, 2015, 51(2), 129(in Chinese). 杨锐. 金属学报, 2015, 51(2), 129. 3 Zhang J, Feng R C, Yao Y J, et al. Materials Reports, 2023(6), 21080280(in Chinese). 张隽, 冯瑞成, 姚永军, 等. 材料导报, 2023(6), 21080280. 4 Kou P P, Feng R C, Li H Y, et al. Materials Reports, 2021, 35(10), 10114(in Chinese). 寇佩佩, 冯瑞成, 李海燕, 等. 材料导报, 2021, 35(10), 10114. 5 Song Q G, Dong S S, Hu Y, et al. Materials Reports, 2021, 35(2), 2057(in Chinese). 宋庆功, 董珊珊, 胡烨, 等. 材料导报, 2021, 35(2), 2057. 6 Bewlay B P, Nag S, Suzuki A, et al. Materials at High Temperatures, 2016, 33, 549. 7 Habel U, Heutling F, Kunze C, et al. In: Proceeding of the 13th World Conference on Titanium, USA, 2016, pp.1223. 8 Wright P K, Jain M, Cameron D. In:Superalloys 2004. USA, 2004, pp.657. 9 Liu E Z, Zheng Z, Tong J, et al. Acta Metallurgica Sinica, 2010, 46(6), 708(in Chinese). 刘恩泽, 郑志, 佟健, 等. 金属学报, 2010, 46(6), 708. 10 Yamabe-Mitarai Y, Ro Y, Maruko T, et al. In: Structural Intermetallics. Warrendale, 1997, pp.313. 11 Kou P P, Feng R C, Li H Y, et al. Materials Reports, 2020, 34(14), 14140(in Chinese). 寇佩佩, 冯瑞成, 李海燕, 等. 材料导报, 2020, 34(14), 14140. 12 Clemens H, Chladil H F, Wallgram W, et al. Intermetallics, 2008, 16(6), 827. 13 Tetsui T, Shindo K, Kobayashi S, et al. Scripta Materialia, 2002, 47(6), 399. 14 Schwaighofer E, Clemens H, Mayer S, et al. Intermetallics, 2014, 44, 128. 15 Tetsui T, hindo K, Kaji S, et al. Intermetallics, 2005, 13(9), 971. 16 Voisin T, Monchoux J P, Hantcherli M, et al. Acta Materialia, 2014, 73, 107. 17 Liu X F, Liu D, Lui R C, et al. Acta Metallurgica Sinica, 2020, 56(7), 53(in Chinese). 刘先锋, 刘冬, 刘仁慈, 等. 金属学报, 2020, 56(7), 53. 18 GB/T 24176-2009, 金属材料 疲劳试验 数据统计方案与分析方法, 中国标准出版社, 2009. 19 Kumpfert J, Kim Y W, Dimiduk D M. Materials Science & Engineering A, 1995, s192-193(part-P1), 465. 20 Sastry S, Lipsitt H A. Metallurgical and Materials Transactions A, 1977, 8(2), 299. 21 Boettner R C, Stoloff N S, Davies R G. Aime Met Soc Trans, 1966, 236(1), 131. 22 Ham R K. Canadian Matal Quarterly, 1966, 5(3), 161. 23 Filippini M, Beretta S, Patriarca L, et al. In: International Symposium on Gamma TiAl Alloys. USA, 2014, pp.87. 24 Wan W J, Han W, Zhang J. Materials Reports, 2014, 28(23), 8(in Chinese). 万文娟, 韩伟, 张继. 材料导报, 2014, 28(23), 8. 25 Jha S K, Larsen J M, Rosenberger A H. Acta Materialia, 2005, 53(5), 1293. 26 Li R, Qu H X, Chun Q. Journal of Jinling Institute of Technology, 2005(3), 17(in Chinese). 李荣, 邱洪兴, 淳庆. 金陵科技学院学报, 2005(3), 17. 27 Lin Y Z, Zhou S Q, Cao R, et al. Materials for Mechanical Engineering, 2013, 37(10), 25(in Chinese). 林有智, 周少秋, 曹睿, 等. 机械工程材料, 2013, 37(10), 25. 28 Cao R, Chen J H, Zhang J, et al. Rare Metal Materials and Engineering, 2005(5), 696(in Chinese). 曹睿, 陈剑虹, 张继, 等. 稀有金属材料与工程, 2005(5), 696.