Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 22010266-7    https://doi.org/10.11896/cldb.22010266
  金属与金属基复合材料 |
低应变率荷载作用下梯度泡沫铝力学性能研究
刘雄飞1,2,*, 和西民1
1 河北工业大学土木与交通学院,天津 300401
2 北京理工大学冲击环境材料技术重点实验室,北京 100081
Study on Mechanical Properties of Gradient Aluminum Foam Under Low Strain Rate Loading
LIU Xiongfei1,2,*, HE Ximin1
1 School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China
2 National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing Institute of Technology, Beijing 100081, China
下载:  全 文 ( PDF ) ( 11621KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 泡沫铝在工作状态下受到偶然低速荷载冲击作用会降低其吸能特性。本工作研究了匀质和梯度泡沫铝的准静态力学性能,测试了不同应变率(4×10-4 s-1、3×10-3 s-1、1×10-2 s-1)下梯度泡沫铝的压缩性能变化规律,同时采用X射线计算机断层扫描(X-CT)测定其压缩变形失效模式,探明了应变率及相对密度对梯度泡沫铝压缩吸能的影响规律。实验结果表明:在低速荷载作用下,匀质泡沫铝沿壁厚最薄弱区域开始变形,直至破坏;梯度泡沫铝则逐层压溃,直至失效破坏。相同应变率条件下,泡沫铝的强化倾向能力随相对密度提高而逐渐增强,梯度和匀质泡沫铝的应变率敏感系数分别最高可达0.235和0.210。泡沫铝初始压溃应力、平台应力随应变率提高而增大,梯度(MMH型)和匀质(H型)泡沫铝的初始压溃应力、平台应力分别最高可达10.02 MPa、10.7 MPa和12.89 MPa、10.19 MPa。相比匀质泡沫铝,梯度泡沫铝单位体积能量吸收值最多降低9%。本工作提出了以提高泡沫铝能量吸收效率为目标的最佳设计应力和能量吸收点的设计方法,可为泡沫铝夹芯结构防护面板的设计提供一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘雄飞
和西民
关键词:  梯度泡沫铝  低应变率  X射线计算机断层扫描(X-CT)  相对密度  能量吸收    
Abstract: The energy absorption characteristics of foamed aluminum will be deteriorated, when it is subjected to occasional low-speed loads. In this work, the quasi-static mechanical properties of single-layer and gradient foamed aluminums were studied. The compressive properties of gradient foamed aluminums were tested at different strain rates (4×10-4 s-1, 3×10-3 s-1, 1×10-2 s-1), and the failure modes of compressive deformation were measured by X-ray computed tomography (X-CT). The effects of strain rate and relative density on the compression and energy absorption of gradient foamed aluminums were investigated. The experimental results showed that under low speed loads, uniform foamed aluminum deformed along the weakest area of wall thickness till failure, while gradient foamed aluminum collapsed layer by layer. At the same strain rate, the strengthening tendency ability of foamed aluminums increased gradually with the increase in relative density, and the strain rates sensitivity coefficients of gradient and single-layer foamed aluminums were up to 0.235 and 0.210, respectively. The initial collapses stress and pla-teau stress of foamed aluminums increased with the strain rate. The initial collapses stress and plateau stress of gradient(MMH) and single-layer(H) foamed aluminums increased to 10.02 MPa, 10.7 MPa and 12.89 MPa, 10.19 MPa, respectively. Compared with the uniform foamed aluminum, the energy absorption maximum value of gradient foamed aluminum decreased by 9%. In this work, the design method of optimal design stress and energy absorption point was proposed, aiming to improve the energy absorption efficiency of foamed aluminum. We expect to provide a certain reference for the design of the protective panel of the foamed aluminum sandwich structure.
Key words:  gradient foamed aluminum    low strain rate    X-ray computed tomograph (X-CT)    relative density    energy absorption
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TU512.4  
基金资助: 国家自然科学基金(51908182); 河北省自然科学基金(E2020202043;E2019202484);冲击环境材料技术重点实验室基金(6142902200304)
通讯作者:  * 刘雄飞,博士,副教授,河北工业大学“元光学者”、土木与交通学院实验室副主任、硕士研究生导师,河北省“巨人计划”创新团队成员,河北省电磁环境技术创新中心客座研究员,中国硅酸盐学会水泥基流变测试技术专家委员会委员。2012年7月于华北理工大学获得学士学位,2018年7月于北京工业大学获得博士学位。发表高水平论文20余篇,获授权国家发明专利10余项。主持国家级、省部级自然科学基金项目2项,主持预研装备重点实验室基金军工项目1项。主要研究方向包括3D打印、高性能水泥基材料与结构、电磁防护材料与结构等。liuxfking@foxmail.com   
引用本文:    
刘雄飞, 和西民. 低应变率荷载作用下梯度泡沫铝力学性能研究[J]. 材料导报, 2023, 37(7): 22010266-7.
LIU Xiongfei, HE Ximin. Study on Mechanical Properties of Gradient Aluminum Foam Under Low Strain Rate Loading. Materials Reports, 2023, 37(7): 22010266-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010266  或          http://www.mater-rep.com/CN/Y2023/V37/I7/22010266
1 Ikutegbe C A, Farid M M. Renewable and Sustainable Energy Reviews, 2020, 131, 110008.
2 An Y, Ma H, Zhang J, et al. Journal of Materials Processing Technology, 2021, 296, 117212.
3 Zhang G C, Guo C Q, Yan Z K, et al. Materials Reports, 2021, 35(24), 24158 (in Chinese).
张光成, 郭超群, 闫治坤, 等. 材料导报, 2021, 35(24), 24158.
4 Zhang Z C, Xu T, Wu Y Q, et al. Materials Reports, 2021, 35(23), 23121 (in Chinese).
张子晨, 许涛, 武艺卿, 等. 材料导报, 2021, 35(23), 23121.
5 Chen D, Jing L, Yang F. Composites Part B:Engineering, 2019, 166(1), 169.
6 He S Y, Zhang Y, Dai G, et al. Materials Science and Engineering:A, 2014, 618(17), 496.
7 Yang K, Yang X D, Liu E Z, et al. Materials Science and Engineering:A, 2017, 690, 294.
8 Yi Z, He S Y, Liu J G, et al. Composite Structures, 2019, 220, 451.
9 Alan H B, David C D. Materials Science and Engineering A, 2008, 489(1-2), 439.
10 Liang M Z, Zhang G D, Lu F Y, et al. Thin-Walled Structures, 2017, 112, 98.
11 Wu H X, Liu Y. Explosion and Shock Waves, 2013, 33(2), 163 (in Chinese).
吴鹤翔, 刘颖. 爆炸与冲击, 2013, 33(2), 163.
12 Hangai Y, Kubota N, Utsunomiya T, et al. Materials Science and Engineering:A, 2015, 639, 597.
13 Shunmugasamy V C, Mansoor B. Materials Science and Engineering:A, 2018, 731, 220.
14 He S Y, Lv Y N, Chen S T, et al. Materials Science and Engineering:A, 2020, 772, 138658.
15 Yin H, Dai J, Wen G, et al. International Journal of Computational Methods, 2018, 15(1), 1850088.
16 Kader M A, Hadell P J, Islam M A, et al. Materials Science and Engineering:A, 2021, 818(22), 141379.
17 Wang X K, Zheng Z J, Yu J L, et al. Applied Mechanics and Materials, 2011, 69, 73.
18 Wang T S, Wang J C, Li L, et al. Electro-Mechanical Engineering, 2015, 31(5), 48 (in Chinese).
王天石, 王建昌, 李立, 等. 电子机械工程, 2015, 31(5), 48.
19 Zhao R X, Yin L, Pan L Y. Aerospace Material and Technology, 2011, 41(2), 13 (in Chinese).
赵锐霞, 尹亮, 潘玲英. 宇航材料工艺, 2011, 41(2), 13.
20 Latour M, D’Aniello M, Landolfo R, et al. Thin-Walled Structures, 2021, 164, 107894.
21 Talebi S, Sadighi M, Aghdam M M, et al. Materials Today Communications, 2017, 13, 170.
22 Wang N Z, Chen X, Li A, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(2), 359.
王宁珍, 陈祥, 李奡, 等. 中国有色金属学会会刊, 2016, 26(2), 359.
23 Li Y, Liu X, Li J. Journal of Materials in Civil Engineering, 2017, 29(5), 04016275. 1.
24 Wei W J, He X C, Liu J M, et al. Ordnance Material Science and Engineering, 2018, 41(6), 10 (in Chinese).
魏文杰, 何晓聪, 刘佳沐, 等. 兵器材料科学与工程, 2018, 41(6), 10.
25 Song B N. Study on preparation of aluminum foam sandwich and mechanical properties. Ph. D. Thesis, Northeastern University, China, 2012 (in Chinese).
宋滨娜. 金属泡沫铝夹芯板的制备与力学性能研究. 博士学位论文, 东北大学, 2012.
26 Babcsan N, Beke S, Szamel G, et al. Procedia Materials Science, 2014, 4, 69.
27 Hangai Y, Kawato D, Ando M, et al. Materials Characterization, 2020, 170 (2-3), 110631.
28 Mukherjee M, Garcia-Moreno F, Jiménez C, et al. Acta Materialia, 2017, 131, 156.
29 Zhang Q, Lee P D, Singh R, et al. Acta Materialia, 2009, 57(10), 3003.
30 Jeon I, Asahina T, Kang K J, et al. Mechanics of Materials, 2010, 42(3), 227.
31 Liu K L, Chen C X, Guo W B, et al. Materials Science and Engineering:A, 2022, 832, 142470.
32 Zhang J, Zhao G P, Lu T J. Engineering Mechanics, 2016, 33(8), 211 (in Chinese).
张健, 赵桂平, 卢天健. 工程力学, 2016, 33(8), 211.
33 Yu D, Yi D, Zla B, et al. Composites Science and Technology, 2020, 199, 108339.
34 Avalle M, Belingardi G, Montanini R. International Journal of Impact Engineering, 2005, 480(25), 455.
35 Lyu D. Design of the buffer and energy absorption structure based on the aluminum foam. Master's Thesis, Nanjing University of Science and Technology, China, 2017 (in Chinese).
吕丁. 基于泡沫铝的缓冲吸能结构设计研究. 硕士学位论文, 南京理工大学, 2017.
36 Han F S, Zhu Z Z, Gao J C. Metallurgical and Materials Transactions A, 1998, 29, 2489.
37 Zeng F, Pan Y, Hu S S. Explosion and Shock Waves, 2002, 22(4), 358 (in Chinese).
曾斐, 潘艺, 胡时胜. 爆炸与冲击, 2002, 22(4), 358.
[1] 邓云飞, 安静丹, 任光辉, 魏刚. 铝合金圆波纹夹芯板对半球形体的低速冲击响应特性及失效机制[J]. 材料导报, 2022, 36(24): 21080249-6.
[2] 黎业华, 聂光临, 盛鹏飞, 邓欣, 包亦望, 伍尚华. Al2O3陶瓷增材制造工艺研究进展[J]. 材料导报, 2022, 36(14): 20110097-12.
[3] 杨鑫, 马文君, 王岩, 刘世锋, 张兆洋, 王婉琳, 王犇, 汤慧萍. 增材制造金属点阵多孔材料研究进展[J]. 材料导报, 2021, 35(7): 7114-7120.
[4] 杨荣周, 徐颖, 陈佩圆. 养护湿度对橡胶水泥砂浆动态压缩破坏特征及能量耗散的影响[J]. 材料导报, 2020, 34(14): 14070-14078.
[5] 冯振宇, 李恒晖, 刘义, 解江, 牟浩蕾, 惠旭龙, 舒挽. 中低应变率下7075-T7351铝合金本构与失效模型对比[J]. 材料导报, 2020, 34(12): 12088-12093.
[6] 段伟, 赵哲, 吉红伟, 卢洋, 陈嘉星, 倪培燊, 邓欣, 刘建业, 戚文军, 牛留辉, 高文华. 粉体性能及选区激光熔化打印工艺对AlSi10Mg合金致密化行为的影响[J]. 材料导报, 2019, 33(10): 1685-1690.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed