Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21080249-6    https://doi.org/10.11896/cldb.21080249
  金属与金属基复合材料 |
铝合金圆波纹夹芯板对半球形体的低速冲击响应特性及失效机制
邓云飞1,*, 安静丹1, 任光辉2, 魏刚1
1 中国民航大学航空工程学院,天津 300300
2 中国民航大学国资处,天津 300300
Response on the Characteristics and Failure Mechanism of Aluminum Alloy Circular Corrugated Sandwich Panels Under Low Velocity Impact
DENG Yunfei1,*, AN Jingdan1, REN Guanghui2,WEI Gang1
1 College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
2 State Owned Assets Management Office, Civil Aviation University of China, Tianjin 300300, China
下载:  全 文 ( PDF ) ( 12751KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究铝合金圆波纹夹芯板在低速冲击下的吸能特性、变形情况和失效机理,利用落锤进行低速冲击试验,揭示冲击位置和初始冲击能量对圆波纹夹芯板低速冲击响应特性的影响。冲击位置分别为波纹夹芯板的节点和基座,冲击能量范围为120~400 J。实验结果表明,夹芯板主要发生拉伸断裂失效,冲击能量和位置对夹芯板动态载荷响应存在显著的影响。夹芯板的最大冲击载荷随着冲击能量增加而增加,并且节点冲击的最大载荷高于基座冲击的最大载荷,两者的差距随冲击能量增加而减小。夹芯板节点位置冲击的载荷可以迅速达到峰值,而基座位置冲击的载荷需要经过一个过程才能达到峰值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓云飞
安静丹
任光辉
魏刚
关键词:  波纹夹芯结构  冲击  能量吸收  失效机理    
Abstract: In order to study the energy absorption characteristics, deformation and failure mechanism of aluminum alloy circular corrugated sandwich panel under low velocity impact, low velocity impact tests were carried out by using drop weight to reveal the influence of impact position and initial impact energy on the low velocity impact response characteristics of circular corrugated sandwich panel. The impact positions are the node and pedestal of corrugated sandwich panel, and the impact energy is in the range 120—400 J. The experimental results show that the dominant failure mode of the sandwich panel is tensile fracture failure, and the impact energy and position have significant effects on the dynamic load response of the sandwich panel. The maximum impact load of the sandwich panel increases with the increase of impact energy, and the maximum impact load of node is higher than that of pedestal, the difference between them decreases with the increase of impact energy. The impact load at the node of sandwich panel can reach the peak quickly, while the impact load at the pedestal needs a process to reach the peak.
Key words:  corrugated sandwich structure    impact    energy absorption    failure mechanism
发布日期:  2023-01-03
ZTFLH:  TG156  
基金资助: 中央高校基本科研业务费项目中国民航大学专项资助(3122021048)
通讯作者:  yfdeng@cauc.edu.cn   
作者简介:  邓云飞,中国民航大学副教授。2005年于天津工业大学获得工学学士学位,2008年于哈尔滨工业大学获得工学硕士学位,2012年于哈尔滨工业大学获得工学博士学位。主要从事航空器结构失效与维修技术研究,重点研究材料和结构冲击动力学的实验与仿真技术,在国内外重要期刊发表文章60多篇,主持和参与10多项国家级及省部级项目。
引用本文:    
邓云飞, 安静丹, 任光辉, 魏刚. 铝合金圆波纹夹芯板对半球形体的低速冲击响应特性及失效机制[J]. 材料导报, 2022, 36(24): 21080249-6.
DENG Yunfei, AN Jingdan, REN Guanghui,WEI Gang. Response on the Characteristics and Failure Mechanism of Aluminum Alloy Circular Corrugated Sandwich Panels Under Low Velocity Impact. Materials Reports, 2022, 36(24): 21080249-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080249  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21080249
1 Yang J S, Ma L, Schroder K U, et al. Polymer Testing, 2018, 68, 8.
2 Wang X, Zhao Z Y, Li L, et al. Thin-Walled Structures, 2019, 135, 329.
3 Yu R P, Wang X, Zhang Q C, et al. Composites Part B, 2020, 197, 108135.
4 Cheng Y S, Liu M X, Zhang P, et al. International Journal of Mechanical Sciences, 2018, 145, 378.
5 Pan J, Wu T H, Zhou C Y, et al. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2017, 41(6), 929 (in Chinese).
潘晋, 吴天昊, 周初阳, 等. 武汉理工大学学报(交通科学与工程版), 2017, 41(6), 929.
6 Yu B, Han B, Ni C Y, et al. Journal of Xi'an Jiaotong University, 2015, 49(1), 906 (in Chinese).
于渤, 韩宾, 倪长也, 等. 西安交通大学学报, 2015, 49(1), 906.
7 Yu B, Han B, Ni C Y, et al. Chinese Journal of Applied Mechanics, 2014, 31(6), 906 (in Chinese).
于渤, 韩宾, 倪长也, 等. 应用力学学报, 2014, 31(6), 906.
8 Rong Y, Liu J X, Luo W, et al. Composites Part B, 2018, 152, 324.
9 Boonkong T, Shen Y O, Guan Z W, et al. International Journal of Impact Engineering, 2016, 93, 28.
10 Cao B T, Hou B, Li Y L, et al. International Journal of Solids and Structures, 2017, 109, 35.
11 Cao B T. Impact behavior of metal sandwich with corrugated cores. Ph.D. Thesis, Northwestern Polytechnical University, China, 2017 (in Chinese).
曹兵妥. 金属波纹板夹层结构的冲击力学行为. 博士学位论文, 西北工业大学, 2017.
12 Chen S J, Qin Q H, Zhang W, et al. Acta Aeronautica et Astronautica Sinica, 2018, 39(2), 165 (in Chinese).
陈尚军, 秦庆华, 张威, 等. 航空学报, 2018, 39(2), 165.
[1] 韩成, 曹睿. 硼在钢中的作用及表征方式[J]. 材料导报, 2022, 36(Z1): 21080164-4.
[2] 宋婕, 常英珂, 吴瑞德, 李琳, 张程煜. 13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理[J]. 材料导报, 2022, 36(4): 20120015-5.
[3] 张倩倩, 陈冲, 张聪, 马晶博, 张程, 毛丰. 硼对高铬铸铁铸渗层组织和性能的影响[J]. 材料导报, 2022, 36(4): 20110229-7.
[4] 窦学铮, 蒋立武, 宋尽霞, 赵云松. 镍基单晶高温合金力学性能各向异性的研究进展[J]. 材料导报, 2022, 36(24): 21040222-15.
[5] 李美艳, 赖家美, 莫明智, 罗志强, 黄志超. 缝合复合材料层板面内边缘冲击及冲击后压缩实验[J]. 材料导报, 2022, 36(23): 21050254-6.
[6] 刘文超, 高峰, 曲江英, 籍少敏, 霍延平. 高镍三元正极材料失效机制与改性[J]. 材料导报, 2022, 36(21): 20100053-9.
[7] 武多多, 郑会龙, 康振亚, 习常清, 张谭. 基于金属骨架的复合材料混合结构拉伸性能与失效机理分析[J]. 材料导报, 2022, 36(20): 21050214-7.
[8] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[9] 罗志强, 赖家美, 黄志超, 莫明智, 李美艳. 缝合碳纤维泡沫夹芯复合材料反复低速冲击性能研究[J]. 材料导报, 2022, 36(19): 21050268-8.
[10] 乔敏, 单广程, 高南箫, 陈健, 吴井志, 朱伯淞, 冉千平. 混凝土气泡调控型表面活性剂的研究进展[J]. 材料导报, 2022, 36(18): 20090232-7.
[11] 刘成豪, 陈芙蓉. 超声冲击强化7A52铝合金VPPA-MIG焊接接头的疲劳性能[J]. 材料导报, 2022, 36(15): 21030115-5.
[12] 董万龙, 曹睿, 蒋勇, 杨飞, 黄义芳, 徐晓龙, 陈剑虹. Cr-Mo-V耐热钢焊条电弧焊焊缝金属低温冲击韧性研究[J]. 材料导报, 2022, 36(15): 20120001-5.
[13] 房玉鑫, 王优强, 张平, 罗恒. SiCp/Al复合材料切削加工中颗粒失效及表面缺陷形成机理仿真研究[J]. 材料导报, 2022, 36(13): 21010146-8.
[14] 王呼和, 新巴雅尔, 李晓杰. 爆炸冲击诱发AISI304不锈钢马氏体微观形貌研究[J]. 材料导报, 2022, 36(10): 20110061-6.
[15] 陆由付, 王朝辉, 王学成, 樊振通, 肖绪荡. 桥面现浇混凝土细微裂缝用环氧灌浆材料的环境适应性[J]. 材料导报, 2022, 36(1): 20090252-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed