Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 20100053-9    https://doi.org/10.11896/cldb.20100053
  无机非金属及其复合材料 |
高镍三元正极材料失效机制与改性
刘文超1,2, 高峰2, 曲江英2,*, 籍少敏1,*, 霍延平1
1 广东工业大学轻工化工学院, 广州 510006
2 东莞理工学院生态环境与建筑工程学院,广东 东莞 523808
Failure Mechanism and Modification of High Nickel Ternary Cathode Materials
LIU Wenchao1,2, GAO Feng2, QU Jiangying2,*, JI Shaomin1,*, HUO Yanping1
1 College of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China
2 School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
下载:  全 文 ( PDF ) ( 5887KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高镍三元层状正极材料因具有超高的质量能量密度(250 W·h/kg)、理论比容量(200 mA·h/g)和较低的生产成本(50元/kg),逐渐成为商业新型动力电池正极材料的主要发展方向之一。但因其充放电过程中表面较高的碱含量、Ni2+/Li+阳离子混排、氧缺陷和颗粒开裂等结构问题,容易造成材料相变的发生,从而降低材料的热稳定性能和电化学性能。本文介绍了商业现有锂离子电池正极材料的研究现状及结构和性能指标,总结了高镍三元层状正极材料的容量失效和结构降解机理,重点综述了近三年关于高镍三元层状正极材料表面包覆和体相掺杂的策略,并对高镍三元正极材料在单晶体系、低钴或无钴、电解液添加剂和安全性能等方面的未来发展趋势及实际生产运用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘文超
高峰
曲江英
籍少敏
霍延平
关键词:  高镍  失效机理  表面包覆  体相掺杂    
Abstract: The high-nickel ternary layered cathode materials have gradually become the main development direction of new commercial cathode materials for lithium-ion battery (LIB) due to their ultra-high energy density (250 W·h/kg) and theoretical specific capacity (200 mA·h/g) as well as low cost (50 yuan/kg). However, they often suffer structural problems such as high residual alkali,Ni2+/Li+ cation mixing, oxygen defects, particle cracking and phase transformation during the process of charging and discharging, which are prone to reduce the thermal stability and electrochemical performance. Starting with a brief introduction of the status quo of global commercial cathode materials for LIB and on the basis of a summary of the mechanisms behind capacity failure and structural degradation of high nickel ternary layered cathode materials, this review put emphasis on the pertinent improvement strategies including surface coating and bulk doping in recent three years. It ends with a prospective discussion on the future development trends such as single crystal system, low cobalt or no cobalt, electrolyte additives and safety performances, as well as the industrial commercialization.
Key words:  high nickel    failure mechanism    surface coating    bulk doping
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TM912  
基金资助: 国家自然科学基金(51972059);东莞理工学院领军人才项目(GB200902-31);东莞理工学院博士启动资助(GC300501-072)
通讯作者:  * qujianggaofeng@163.com;smji@gdut.edu.cn   
作者简介:  刘文超,2018年6月毕业于泉州师范学院,获得学士学位。现为广东工业大学硕士研究生,在曲江英和籍少敏教授的指导下进行研究。目前主要研究方向为锂离子电池高镍三元正极材料。
曲江英,东莞理工学院教授、硕士研究生导师。2007年获得大连理工大学理学博士学位,主要研究方向为炭基新材料的结构设计、环境净化和能源转化应用研究。在Nano Energy、Applied Catalyst B等国内外著名期刊上发表论文30余篇。
籍少敏,广东工业大学教授、博士研究生导师、广东省青年珠江学者。2011年获得大连理工大学理学博士学位,主要从事有机光电材料、上转换发光材料、发光分子探针、储锂/钠材料等方面的研究,在Angewandte Chemie International Edition等权威学术刊物上发表SCI论文90余篇。
引用本文:    
刘文超, 高峰, 曲江英, 籍少敏, 霍延平. 高镍三元正极材料失效机制与改性[J]. 材料导报, 2022, 36(21): 20100053-9.
LIU Wenchao, GAO Feng, QU Jiangying, JI Shaomin, HUO Yanping. Failure Mechanism and Modification of High Nickel Ternary Cathode Materials. Materials Reports, 2022, 36(21): 20100053-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100053  或          http://www.mater-rep.com/CN/Y2022/V36/I21/20100053
1 Zhao W. Hebei Electric Power, 2018, 37(5), 29 (in Chinese).
赵炜.河北电力技术, 2018, 37(5), 29.
2 Li J L, Hui D, Jin W T. Large scale energy storage technology, Machinery Industry Press, China, 2018, pp.32 (in Chinese).
李建林, 惠东, 靳文涛. 大规模储能技术, 机械工业出版社, 2018, pp.32.
3 Yuan S D, Yang C X, Jiang G D, et al. Journal of Materials Enginee-ring, 2019, 47(10), 1 (in Chinese).
袁颂东, 杨灿星, 江国栋,等. 材料工程, 2019, 47(10), 1.
4 Ritchie A G. Journal of Power Sources, 2001, 96(1), 1.
5 Shao Y J, Huang B, Liu Q B, et al. Progress in Chemistry, 2018, 30(4), 410 (in Chinese).
邵奕嘉, 黄斌, 刘全兵,等. 化学进展, 2018, 30(4), 410.
6 Fong R, Sacken U V, Dahn J R. Journal of the Electrochemical Society, 1990, 137(7), 2009.
7 Yan W W, Liu Y N, Chong S K, et al. Progress in Chemistry, 2017, 29(2-3), 198 (in Chinese).
严武渭, 柳永宁, 崇少坤,等.化学进展, 2017, 29(2-3), 198.
8 Liu J, Liu W, Ji S M, et al. ChemPlusChem, 2013, 78(7), 636.
9 Feng Z, Sun D, Tang Y G, et al. Progress in Chemistry, 2019, 31(2-3), 442 (in Chinese).
冯泽, 孙旦, 唐有根,等. 化学进展, 2019, 31(2-3), 442.
10 Tsutomu O, Makimura Y. Chemistry Letters, 2001, 30(7), 642.
11 Zhang B, Li L J, Zheng J C. Journal of Alloys and Compounds, 2012, 520, 190.
12 Binder J, Culver S P, Pindeo R, et al. ACS Applied Materials & Interfaces, 2018, 10(51), 44452.
13 Wu F, Tian J, Su Y F, et al. ACS Applied Materials & Interfaces, 2015, 7(14), 7702.
14 Shim J H, Im J S, Kang H, et al. Journal of Materials Chemistry A, 2018, 6(33), 16111.
15 Cheng C X, Tan L, Liu H W, et al. Materials Research Bulletin, 2011, 121, 2032.
16 Chen S, He T, Su Y F, et al. ACS Applied Materials & Interfaces, 2017, 9(35), 29732.
17 Min K, Jung C, Ko D S, et al. ACS Applied Materials & Interfaces, 2018, 10(24), 20599.
18 Bak S M, Hu E Y, Zhou Y N, et al. ACS Applied Materials & Interfaces, 2014, 6(24), 22594.
19 Sun H, Zhao K J. Journal of Physical Chemistry C, 2017, 121(11), 6002.
20 Cho D H, Jo C H, Cho W, et al. Journal of the Electrochemical Society, 2014, 161(6), A920.
21 Li C L, Wang P, Li S Y, et al. ACS Applied Materials & Interfaces, 2018, 10(30), 25744.
22 Tian L Y, Liang K, Wen X F, et al. Journal of Electroanalytical Chemistry, 2018, 812, 22.
23 Park K, Choi B. Journal of Alloys and Compounds, 2018, 766, 470.
24 Park K, Park J H, Hong S G, et al. Physical Chemistry Chemical Phy-sics, 2016, 18(42), 29076.
25 Min K, Seo S W, Choi B, et al. ACS Applied Materials & Interfaces, 2017, 9(21), 17822.
26 Hwang S, Chang W, Kim S M, et al. Chemistry of Materials, 2014, 26(2), 1084.
27 Yin H, Ji S M, Gu M Z, et al. RSC Advances, 2015, 5(103), 84673.
28 Wang T, Chen Z J, Zhao R R, et al. Electrochimica Acta, 2016, 211, 461.
29 Wang T, Chen Z J, Zhao R R, et al. Electrochimica Acta, 2016, 194, 1.
30 Chae B J, Park J H, Song H J, et al. Electrochimica Acta, 2018, 290, 465.
31 Zhu W C, Huang X, Liu T T, et al. Coating, 2019, 9(2), 92.
32 Ran Q W, Zhao H Y, Hu Y Z, et al. ACS Applied Materials & Interfaces, 2020, 12(8), 9268.
33 Zhu L, Yan T F, Jia D, et al. Journal of the Electrochemical Society, 2019, 166(3), A5437.
34 Dong M X, Wang Z X, Li H K, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(11), 10199.
35 Cho K, Kim S M, Song J H,et al. Journal of Power Sources, 2015, 282, 45.
36 Tao T, Chen C, Yao Y B, et al. Ceramics International, 2017, 43(17), 15173.
37 Li Y, Liu X, Ren D S,et al. Nano Energy, 2020, 71, 104643.
38 Chen Z W, Liu Y X, Lu Z C, et al. Journal of Alloys and Compounds, 2019, 803, 71.
39 Dong S D, Zhou Y, Hai C,et al. Ceramics International, 2019, 45(1), 144.
40 Zhou Y H, Dong H, Liu G B,et al. Journal of Solid State Electrochemistry, 2019, 23(1), 259.
41 Becker D, Bomer M, Nolle R,et al. ACS Applied Materials & Interfaces, 2019, 11(20), 18404.
42 Park J H, Park K, Han D, et al. Journal of Materials Chemistry A, 2019, 7(25), 15190.
43 Hall D S, Gauthier R, Eldesoky A,et al. ACS Applied Materials & Interfaces, 2019, 11(15), 14095.
44 Yan P F, Zheng J M, Liu J,et al. Nature Energy, 2018, 3(7), 600.
45 Zhang J Y, Cao Y, Ou X, et al. Journal of Power Sources, 2019, 436, 226722.
46 Zhan X W, Gao S, Cheng Y T, et al. Electrochimica Acta, 2019, 300, 36.
47 Parekh M C, Sediako A D, Naseri A,et al. Advanced Energy Materials, 2020, 10(2), 1902799.
48 Liu Z B, Ji S M, Xu X J, et al. Chemical Engineering Journal, 2019, 25(2), 582.
49 Xu X J, Mai B, Liu Z B,et al. Chemical Engineering Journal, 2020, 387, 124061.
50 Son I H, Park J H, Park S,et al. Nature Communications, 2017, 8(1), 1.
51 Xu L P, Zhou F, Zhou H B, et al. Electrochimica Acta, 2018, 289, 120.
52 Xua S, Du C Y, Xu X,et al. Electrochimica Acta, 2017, 248, 534.
53 Gan Q M, Qin N, Zhu Y H,et al. ACS Applied Materials & Interfaces, 2019, 11(13), 12594.
54 Xu G L, Liu Q, Lauk K S, et al. Nature Energy, 2019, 4(6), 484.
55 Guo S H, Yuan B, Zhao H M, et al. Nano Energy, 2019, 58, 673.
56 Liu Y, Tang L B, Wei H X,et al. Nano Energy, 2019, 65, 104043.
57 Weiger T, Schipper F, Erichson E M,et al. ACS Energy Letters, 2019, 4(2), 508.
58 Li Y C, Xiang W, Wu Z G, et al. Electrochimica Acta, 2018, 291, 84.
59 Cho W, Lim Y J, Lee S M, et al. ACS Applied Materials & Interfaces, 2018, 10(45), 38915.
60 Li C L, Kan W H, Xie H L,et al. Advance Science, 2019, 6(4), 1801406.
61 Park K J, Jung H G, Kuo L Y,et al. Advanced Energy Materials, 2018, 8(25), 1801202.
62 Min K, Seo S W, Song Y Y, et al. Physical Chemistry Chemical Physics, 2017, 19(3), 1762.
63 Sun Y X, Hai C X, Shen Y, et al. Journal of the Electrochemical Society, 2020, 167(2), 020522.
64 Li R, Ming Y, Xiang W, et al. RSC Advances, 2019, 9(63), 36849.
65 Yang H P, Wu H H, Ge M Y,et al. Advanced Functional Materials, 2019, 29(13), 1808825.
66 Wang L F, Liu G Y, Ding X A, et al. ACS Applied Materials & Interfaces, 2019, 11(37), 33901.
67 Qian G M, Zhang Y T, Li L S, et al. Energy Storage Materials, 2020, 27, 140.
68 Zhong Z Q, Chen L Z, Huang S Z, et al. Journal of Materials Science, 2020, 55(7), 2913.
69 Li H Y, Cormier M, Zhang N, et al. Journal of the Electrochemical Society, 2019, 166(4), A429.
70 Yim T, Kang K S, Mun J Y, et al. Journal of Power Sources, 2016, 302, 431.
[1] 武多多, 郑会龙, 康振亚, 习常清, 张谭. 基于金属骨架的复合材料混合结构拉伸性能与失效机理分析[J]. 材料导报, 2022, 36(20): 21050214-7.
[2] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[3] 乔敏, 单广程, 高南箫, 陈健, 吴井志, 朱伯淞, 冉千平. 混凝土气泡调控型表面活性剂的研究进展[J]. 材料导报, 2022, 36(18): 20090232-7.
[4] 房玉鑫, 王优强, 张平, 罗恒. SiCp/Al复合材料切削加工中颗粒失效及表面缺陷形成机理仿真研究[J]. 材料导报, 2022, 36(13): 21010146-8.
[5] 何康宇, 曹博凯, 莫岩, 陈永. 熔盐法制备LiNi0.8Co0.1Mn0.1O2单晶及其电化学性能[J]. 材料导报, 2021, 35(12): 12027-12031.
[6] 吴坚, 李建营, 李绍敏, 刘昊. 均匀沉淀法助力Li2ZrO3包覆LiNi0.85Co0.1Mn0.05O2提升电化学性能[J]. 材料导报, 2020, 34(6): 6015-6019.
[7] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[8] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[9] 刘洋, 何晓聪, 邢保英, 邓聪, 张先炼. 泡沫金属夹层板自冲铆接头的疲劳性能及失效机理[J]. 《材料导报》期刊社, 2018, 32(14): 2431-2436.
[10] 何柏林,金辉,张枝森,谢学涛,丁江灏. SMA490BW钢对接接头高周疲劳性能的机理探究[J]. 《材料导报》期刊社, 2018, 32(12): 2008-2014.
[11] 张先炼, 何晓聪, 赵伦, 邢保英, 程强. TA1异质自冲铆接头力学性能及失效机理*[J]. 《材料导报》期刊社, 2017, 31(20): 92-95.
[12] 陈亚军, 王先超, 王付胜, 周剑, 刘辰辰. 相位角加载条件下2A12铝合金多轴疲劳失效行为*[J]. 《材料导报》期刊社, 2017, 31(14): 147-152.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed