Failure Mechanism and Modification of High Nickel Ternary Cathode Materials
LIU Wenchao1,2, GAO Feng2, QU Jiangying2,*, JI Shaomin1,*, HUO Yanping1
1 College of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China 2 School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
Abstract: The high-nickel ternary layered cathode materials have gradually become the main development direction of new commercial cathode materials for lithium-ion battery (LIB) due to their ultra-high energy density (250 W·h/kg) and theoretical specific capacity (200 mA·h/g) as well as low cost (50 yuan/kg). However, they often suffer structural problems such as high residual alkali,Ni2+/Li+ cation mixing, oxygen defects, particle cracking and phase transformation during the process of charging and discharging, which are prone to reduce the thermal stability and electrochemical performance. Starting with a brief introduction of the status quo of global commercial cathode materials for LIB and on the basis of a summary of the mechanisms behind capacity failure and structural degradation of high nickel ternary layered cathode materials, this review put emphasis on the pertinent improvement strategies including surface coating and bulk doping in recent three years. It ends with a prospective discussion on the future development trends such as single crystal system, low cobalt or no cobalt, electrolyte additives and safety performances, as well as the industrial commercialization.
1 Zhao W. Hebei Electric Power, 2018, 37(5), 29 (in Chinese). 赵炜.河北电力技术, 2018, 37(5), 29. 2 Li J L, Hui D, Jin W T. Large scale energy storage technology, Machinery Industry Press, China, 2018, pp.32 (in Chinese). 李建林, 惠东, 靳文涛. 大规模储能技术, 机械工业出版社, 2018, pp.32. 3 Yuan S D, Yang C X, Jiang G D, et al. Journal of Materials Enginee-ring, 2019, 47(10), 1 (in Chinese). 袁颂东, 杨灿星, 江国栋,等. 材料工程, 2019, 47(10), 1. 4 Ritchie A G. Journal of Power Sources, 2001, 96(1), 1. 5 Shao Y J, Huang B, Liu Q B, et al. Progress in Chemistry, 2018, 30(4), 410 (in Chinese). 邵奕嘉, 黄斌, 刘全兵,等. 化学进展, 2018, 30(4), 410. 6 Fong R, Sacken U V, Dahn J R. Journal of the Electrochemical Society, 1990, 137(7), 2009. 7 Yan W W, Liu Y N, Chong S K, et al. Progress in Chemistry, 2017, 29(2-3), 198 (in Chinese). 严武渭, 柳永宁, 崇少坤,等.化学进展, 2017, 29(2-3), 198. 8 Liu J, Liu W, Ji S M, et al. ChemPlusChem, 2013, 78(7), 636. 9 Feng Z, Sun D, Tang Y G, et al. Progress in Chemistry, 2019, 31(2-3), 442 (in Chinese). 冯泽, 孙旦, 唐有根,等. 化学进展, 2019, 31(2-3), 442. 10 Tsutomu O, Makimura Y. Chemistry Letters, 2001, 30(7), 642. 11 Zhang B, Li L J, Zheng J C. Journal of Alloys and Compounds, 2012, 520, 190. 12 Binder J, Culver S P, Pindeo R, et al. ACS Applied Materials & Interfaces, 2018, 10(51), 44452. 13 Wu F, Tian J, Su Y F, et al. ACS Applied Materials & Interfaces, 2015, 7(14), 7702. 14 Shim J H, Im J S, Kang H, et al. Journal of Materials Chemistry A, 2018, 6(33), 16111. 15 Cheng C X, Tan L, Liu H W, et al. Materials Research Bulletin, 2011, 121, 2032. 16 Chen S, He T, Su Y F, et al. ACS Applied Materials & Interfaces, 2017, 9(35), 29732. 17 Min K, Jung C, Ko D S, et al. ACS Applied Materials & Interfaces, 2018, 10(24), 20599. 18 Bak S M, Hu E Y, Zhou Y N, et al. ACS Applied Materials & Interfaces, 2014, 6(24), 22594. 19 Sun H, Zhao K J. Journal of Physical Chemistry C, 2017, 121(11), 6002. 20 Cho D H, Jo C H, Cho W, et al. Journal of the Electrochemical Society, 2014, 161(6), A920. 21 Li C L, Wang P, Li S Y, et al. ACS Applied Materials & Interfaces, 2018, 10(30), 25744. 22 Tian L Y, Liang K, Wen X F, et al. Journal of Electroanalytical Chemistry, 2018, 812, 22. 23 Park K, Choi B. Journal of Alloys and Compounds, 2018, 766, 470. 24 Park K, Park J H, Hong S G, et al. Physical Chemistry Chemical Phy-sics, 2016, 18(42), 29076. 25 Min K, Seo S W, Choi B, et al. ACS Applied Materials & Interfaces, 2017, 9(21), 17822. 26 Hwang S, Chang W, Kim S M, et al. Chemistry of Materials, 2014, 26(2), 1084. 27 Yin H, Ji S M, Gu M Z, et al. RSC Advances, 2015, 5(103), 84673. 28 Wang T, Chen Z J, Zhao R R, et al. Electrochimica Acta, 2016, 211, 461. 29 Wang T, Chen Z J, Zhao R R, et al. Electrochimica Acta, 2016, 194, 1. 30 Chae B J, Park J H, Song H J, et al. Electrochimica Acta, 2018, 290, 465. 31 Zhu W C, Huang X, Liu T T, et al. Coating, 2019, 9(2), 92. 32 Ran Q W, Zhao H Y, Hu Y Z, et al. ACS Applied Materials & Interfaces, 2020, 12(8), 9268. 33 Zhu L, Yan T F, Jia D, et al. Journal of the Electrochemical Society, 2019, 166(3), A5437. 34 Dong M X, Wang Z X, Li H K, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(11), 10199. 35 Cho K, Kim S M, Song J H,et al. Journal of Power Sources, 2015, 282, 45. 36 Tao T, Chen C, Yao Y B, et al. Ceramics International, 2017, 43(17), 15173. 37 Li Y, Liu X, Ren D S,et al. Nano Energy, 2020, 71, 104643. 38 Chen Z W, Liu Y X, Lu Z C, et al. Journal of Alloys and Compounds, 2019, 803, 71. 39 Dong S D, Zhou Y, Hai C,et al. Ceramics International, 2019, 45(1), 144. 40 Zhou Y H, Dong H, Liu G B,et al. Journal of Solid State Electrochemistry, 2019, 23(1), 259. 41 Becker D, Bomer M, Nolle R,et al. ACS Applied Materials & Interfaces, 2019, 11(20), 18404. 42 Park J H, Park K, Han D, et al. Journal of Materials Chemistry A, 2019, 7(25), 15190. 43 Hall D S, Gauthier R, Eldesoky A,et al. ACS Applied Materials & Interfaces, 2019, 11(15), 14095. 44 Yan P F, Zheng J M, Liu J,et al. Nature Energy, 2018, 3(7), 600. 45 Zhang J Y, Cao Y, Ou X, et al. Journal of Power Sources, 2019, 436, 226722. 46 Zhan X W, Gao S, Cheng Y T, et al. Electrochimica Acta, 2019, 300, 36. 47 Parekh M C, Sediako A D, Naseri A,et al. Advanced Energy Materials, 2020, 10(2), 1902799. 48 Liu Z B, Ji S M, Xu X J, et al. Chemical Engineering Journal, 2019, 25(2), 582. 49 Xu X J, Mai B, Liu Z B,et al. Chemical Engineering Journal, 2020, 387, 124061. 50 Son I H, Park J H, Park S,et al. Nature Communications, 2017, 8(1), 1. 51 Xu L P, Zhou F, Zhou H B, et al. Electrochimica Acta, 2018, 289, 120. 52 Xua S, Du C Y, Xu X,et al. Electrochimica Acta, 2017, 248, 534. 53 Gan Q M, Qin N, Zhu Y H,et al. ACS Applied Materials & Interfaces, 2019, 11(13), 12594. 54 Xu G L, Liu Q, Lauk K S, et al. Nature Energy, 2019, 4(6), 484. 55 Guo S H, Yuan B, Zhao H M, et al. Nano Energy, 2019, 58, 673. 56 Liu Y, Tang L B, Wei H X,et al. Nano Energy, 2019, 65, 104043. 57 Weiger T, Schipper F, Erichson E M,et al. ACS Energy Letters, 2019, 4(2), 508. 58 Li Y C, Xiang W, Wu Z G, et al. Electrochimica Acta, 2018, 291, 84. 59 Cho W, Lim Y J, Lee S M, et al. ACS Applied Materials & Interfaces, 2018, 10(45), 38915. 60 Li C L, Kan W H, Xie H L,et al. Advance Science, 2019, 6(4), 1801406. 61 Park K J, Jung H G, Kuo L Y,et al. Advanced Energy Materials, 2018, 8(25), 1801202. 62 Min K, Seo S W, Song Y Y, et al. Physical Chemistry Chemical Physics, 2017, 19(3), 1762. 63 Sun Y X, Hai C X, Shen Y, et al. Journal of the Electrochemical Society, 2020, 167(2), 020522. 64 Li R, Ming Y, Xiang W, et al. RSC Advances, 2019, 9(63), 36849. 65 Yang H P, Wu H H, Ge M Y,et al. Advanced Functional Materials, 2019, 29(13), 1808825. 66 Wang L F, Liu G Y, Ding X A, et al. ACS Applied Materials & Interfaces, 2019, 11(37), 33901. 67 Qian G M, Zhang Y T, Li L S, et al. Energy Storage Materials, 2020, 27, 140. 68 Zhong Z Q, Chen L Z, Huang S Z, et al. Journal of Materials Science, 2020, 55(7), 2913. 69 Li H Y, Cormier M, Zhang N, et al. Journal of the Electrochemical Society, 2019, 166(4), A429. 70 Yim T, Kang K S, Mun J Y, et al. Journal of Power Sources, 2016, 302, 431.