Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6015-6019    https://doi.org/10.11896/cldb.19040069
  无机非金属及其复合材料 |
均匀沉淀法助力Li2ZrO3包覆LiNi0.85Co0.1Mn0.05O2提升电化学性能
吴坚, 李建营, 李绍敏, 刘昊
中物院成都科学技术发展中心,成都 610207
Homogeneous Precipitation Assisted Li2ZrO3 Coating LiNi0.85Co0.1Mn0.05O2 for Improving Its Electrochemical Performance
WU Jian, LI Jianying, LI Shaomin, LIU Hao
Chengdu Development Center of Science and Technology of CAEP, Chengdu 610207, China
下载:  全 文 ( PDF ) ( 4427KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高镍三元正极材料比容量随着Ni含量的增加而增加的特点与电动汽车亟待提高的续航里程相契合,但是高镍含量所带来的问题对其商业化应用不利。表面包覆可以有效抑制高镍含量对商业化的不利影响,但是非快锂离子导体包覆物会引入不利于锂离子传导的界面,而Li2ZrO3包覆可以有效避免这个问题。化学沉淀法因成本低廉和简单易行的特点在表面包覆中被广泛使用,而尿素则可以有效降低反应速度和提高反应的均匀性,因此本研究采用尿素辅助的化学沉淀法在高镍三元前驱体表面均匀沉淀Zr(OH)4,再经过同步混锂步骤合成锆酸锂包覆的高镍三元正极材料。材料表征结果表明:改良的化学沉淀法有助于形成均匀的包覆层,同步锂化的高温步骤会引发轻微的团聚,Li2ZrO3包覆可以改善高镍三元正极材料的表面化学环境。电化学性能测试显示Li2ZrO3包覆能提升高镍三元正极材料的电化学性能,有效抑制电荷转移阻抗的增长。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴坚
李建营
李绍敏
刘昊
关键词:  高镍三元正极材料  锆酸锂包覆  同步锂化  均匀沉淀法  尿素    
Abstract: The specific capacity of Ni-rich cathode materials increases with the increase of Ni content, which corresponds to the endurance mileage of electric vehicle which needs to be improved urgently. However, surface coating can effectively inhibit the adverse effects of its shortcomings on commercialization, but common coatings can lead to the interface that is unfriendly to lithium ion transmission, while Li2ZrO3 coating can effectively avoid this problem. Chemical precipitation method is widely used in surface coating because of its low cost and simplicity. Urea can effectively reduce the reaction rate and improve the uniformity of the reaction. Therefore, urea-assisted chemical precipitation method was used to precipitate Zr (OH)4 uniformly on the surface of precursor, and then Li2ZrO3 coated Ni-rich cathode material was synthesized through synchronous lithiation. The material characterization shows that the improved chemical precipitation method is helpful to form a uniform coating layer, the high temperature step of synchronization lithization can cause agglomeration and Li2ZrO3 surface coating can improve the chemical environment of Ni-rich cathode materials. The electrochemical performance test of the cathode material shows that Li2ZrO3 coating can improve the electrochemical performance of Ni-rich cathode material and effectively inhibit the growth of charge transfer impedance.
Key words:  Ni-rich cathode material    Li2ZrO3 coating    synchronous lithiation    homogeneous precipitation    urea
                    发布日期:  2020-03-12
ZTFLH:  O646  
基金资助: 四川省科技计划项目(2019JDJQ0046)
作者简介:  吴坚,2016年6月毕业于电子科技大学,获得工学学士学位。于2016年9月至2019年6月在中国工程物理研究院学习,主要从事储能材料与器件领域的研究;刘昊,中物院成都科学技术发展中心,研究员。2010年毕业于西安大略大学机械与材料工程系,获得博士学位。在西方表面科学做了短期博士后研究之后,加入中国工程物理研究院。他目前的研究兴趣集中在新型清洁能源纳米材料的设计上,尤其是电池。
引用本文:    
吴坚, 李建营, 李绍敏, 刘昊. 均匀沉淀法助力Li2ZrO3包覆LiNi0.85Co0.1Mn0.05O2提升电化学性能[J]. 材料导报, 2020, 34(6): 6015-6019.
WU Jian, LI Jianying, LI Shaomin, LIU Hao. Homogeneous Precipitation Assisted Li2ZrO3 Coating LiNi0.85Co0.1Mn0.05O2 for Improving Its Electrochemical Performance. Materials Reports, 2020, 34(6): 6015-6019.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040069  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6015
1 Manthiram A, Knight J C, Myung S T, et al. Advanced Energy Mate-rials, 2016, 6 (1), 1501010.
2 Koyama Y, Tanaka I, Adchi H, et al. Journal of Power Source, 2003, S119-121,644.
3 Yang L, Ravdel B, Lucht B L, et al. Electrochemical and Solid-State Letters, 2010, 13,A95.
4 Su Y, Cui S, Zhou Z, et al. ACS Applied Materials & Interfaces, 2015,7,25105.
5 Chen X, Ma F, Li Y, et al.Electrochimica Acta, 2018, 284,526.
6 Chen Z, Kim G T, Guang Y, et al. Journal of Power Source, 2018, 402,263.
7 Xu Y, Liu Y, Lu Z, et al. Applied Surface Science, 2016, 361,150.
8 Wang M, Zhang R, Gong Y, et al. Solid State Ionics, 2017, 312,53.
9 Okada K, Machida N, Naito M, et al.Solid State Ionics, 2014, 255,120.
10 Song B, Li W, Oh S M, et al. ACS Applied Materials & Interfaces, 2017, 9 (11),9718.
11 Jo C H, Cho D H, Noh H J, et al. Nano Research, 2014, 8 (5),1464.
12 Li L, Chen Z, Zhang Q, et al.Journal of Materials Chemistry A, 2015, 3 (2),894.
13 Baklanova Y V, Arapova I Y, Buzlukov A L, et al. Journal of Solid State Chemistry, 2013, 208,43.
14 Zhou Y, Dong H, Liu G, et al. Journal of Solid State Electrochemistry, DOI:10.1007/s10008-018-4130-9.
15 Wu H, Wang Z, Liu S, et al. ChemElectroChem, 2015, 2,1921.
16 Cheng C, Tan L, Liu H, et al. Materials Research Bulletin, 2011, 46,2032.
17 Li N, An R, Su Y,et al. Journal of Materials Chemistry A, 2013, 1,9760.
18 Huang Y, Chen J, Ni J, et al. Jounal of Power Sources, 2009, 188,538.
19 Miao X, Ni H, Zhang H, et al. Journal of Power Sources, 2014, 264,147.
20 Wu H, Wang Z, Liu S, et al. ChemElectroChem, 2015, 2,1921.
21 Zhou L, Wu H, Tian M, et al.RSC Advances, 2016, 6 (74), 69790.
22 Zhang Y, Wang Z B, Yu F D, et al.Journal of Power Sources, 2017, 358,1.
[1] 徐志勇, 冯东, 赵文波, 柴牧原, 陈玲, 陈媛. 均匀沉淀法可控制备氯化镉氨配合物[J]. 材料导报, 2018, 32(24): 4240-4247.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed