Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12027-12031    https://doi.org/10.11896/cldb.20110085
  无机非金属及其复合材料 |
熔盐法制备LiNi0.8Co0.1Mn0.1O2单晶及其电化学性能
何康宇, 曹博凯, 莫岩, 陈永
海南大学,海南省硅锆钛综合开发与利用重点实验室,南海海洋资源利用国家重点实验室,海口 570228
Synthesis of LiNi0.8Co0.1Mn0.1O2 Single Crystal by Molten Salt Method and Its Electrochemical Performance
HE Kangyu, CAO Bokai, MO Yan, CHEN Yong
Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
下载:  全 文 ( PDF ) ( 4842KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高镍三元正极材料LiNi0.8Co0.1Mn0.1O2因具有高能量密度、环境友好等特性,一直受到工业界和科研人员的关注。然而,它在长循环过程中会产生微裂纹及容量衰减,且循环性能差,制约了其商业化应用。为了改善这些性能,本实验采用辅助熔盐法在775 ℃烧结制备了LiNi0.8Co0.1-Mn0.1O2单晶材料(SC-NCM811),并对其形貌、结构和电化学行为进行了系统研究。该单晶材料分散性好,颗粒尺寸在2~3 μm。在10C电流密度下容量达111.3 mAh·g-1,100次循环后放电比容量为106.8 mAh·g-1,容量保持率为95.9%,明显优于二次球状材料(100次循环后的容量保持率为89.7%)。电化学阻抗和循环伏安结果表明,SC-NCM在很大程度上减缓了循环过程中的极化程度以及电荷传递阻抗的增加,进而提高了材料的循环稳定性,是一种很有前途的锂离子电池正极材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何康宇
曹博凯
莫岩
陈永
关键词:  高镍三元  单晶  熔盐法  倍率性能    
Abstract: Ni-rich layered cathodes LiNi0.8Co0.1Mn0.1O2 receive much research interest for Li-ion batteries due to the environmental friendless and high energy density. However, spherical LiNi0.8Co0.1Mn0.1O2 materials often suffer capacity fading ascribed to microcracks generated from volume variation upon cycling, which hindered their commercial applications. To overcome this inherent instability, the single crystal LiNi0.8Co0.1-Mn0.1O2 (SC-NCM811) has been synthesized via assisted molten salt method with excess amounts of Li2CO3, and its morphology, structure and electrochemical behavior have been systematically investigated. The SEM observation confirms that it composes of dispersed near-brick particles with an average size of about 2—3 μm. Compared to spherical LiNi0.8Co0.1Mn0.1O2, the SC-NCM811 materials shows improved capacity retention from 89.7% to 95.9% with an exceptionally high capacity of 111.3 mAh·g-1 at 10C. The EIS and CV results demonstrate that the enhanced electrochemical properties are attributed to decrease in polarization and suppression of impedance increment during cycling due to the unique morpho-logy structure of SC-NCM. The results of this work indicate that SC-NCM is a promising cathode material for Li-ion batteries.
Key words:  high nickel ternary    single crystal    molten salt method    high rate performance
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TM912.9  
基金资助: 国家自然科学基金(52062012);科技发展专项基金(ZY2019HN0906)
通讯作者:  ychen2002@163.com   
作者简介:  何康宇,2018年9月入学海南大学材料科学与工程学院,攻读硕士研究生,主要从事镍钴锰三元正极材料研究。
陈永,教授/博士研究生导师,博士,海南大学材料科学与工程学院副院长;海南省硅锆钛综合开发与利用重点实验室主任;南海海洋资源利用国家重点实验室海洋能源利用研究团队负责人。主要研究集中在新型储能材料,包括锂离子电池和超级电容器。发表论文140余篇,主持国家自然基金、省创新团队、重点项目和国际合作项目等20余项,申请专利25项。
引用本文:    
何康宇, 曹博凯, 莫岩, 陈永. 熔盐法制备LiNi0.8Co0.1Mn0.1O2单晶及其电化学性能[J]. 材料导报, 2021, 35(12): 12027-12031.
HE Kangyu, CAO Bokai, MO Yan, CHEN Yong. Synthesis of LiNi0.8Co0.1Mn0.1O2 Single Crystal by Molten Salt Method and Its Electrochemical Performance. Materials Reports, 2021, 35(12): 12027-12031.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110085  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12027
1 Myung S T, Maglia F, Park K J, et al. ACS Energy Letters, 2016, 2(1),196.
2 Dong M, Wang Z, Li H, et al. ACS Sustainable Chemistry & Enginee-ring, 2017, 5(11), 10199.
3 Ding Y, Mu D, Wu B, et al. Ceramics International, 2020, 46(7), 9436.
4 Yuan J, Wen J, Zhang J, et al. Electrochimica Acta, 2017, 230, 116.
5 Zheng S, Hong C, Guan X, et al. Journal of Power Sources, 2019, 412,336.
6 Qu Y, Mo Y, Jia X B, et al. Journal of Alloys and Compounds, 2019, 788,810.
7 Li L, Zhang Z, Fu S, et al. Applied Surface Science, 2019, 476,1061.
8 Cheng L, Zhang B, Su S L, et al. Journal of Alloys and Compounds, 2020, 845,156.
9 Li Y C, Xiang W, Wu Z G, et al. Electrochimica Acta, 2018, 291, 84.
10 Zhu J, Zheng J, Cao G, et al. Journal of Power Sources, 2020, 464,228207.
11 Qian G, Zhang Y, Li L, et al. Energy Storage Materials, 2020, 27,140.
12 Liang C, Kong F, Longo R C, et al. The Journal of Physical Chemistry C, 2016, 120(12), 6383.
13 Zong Y, Guo Z, Xu T, et al. International Journal of Energy Research, 2020, 44(11),8532.
14 Sun H H, Choi W, Lee J K, et al. Journal of Power Sources, 2015, 275,877.
15 Zhang S S. Journal of Energy Chemistry, 2020, 41,135.
16 Noh H J, Youn S, Yoon C S, et al. Journal of Power Sources, 2013, 233,121.
17 Zhang X, Kong L L, Gao T Y, et al. Energy Storage Science and Techno-logy,2020, 9(3),813(in Chinese).
张欣, 孔令丽, 高腾跃,等. 储能科学与技术, 2020, 9(3),813.
18 Wei Y, Zheng J, Cui S, et al. Journal of the American Chemical Society, 2015, 137(26),8364.
19 Aida T, Toma T, Kanada S. Journal of Solid State Electrochemistry, 2020, 24(6),1415.
20 Wang L, Wu B, Mu D, et al. Journal of Alloys and Compounds, 2016, 674,360.
21 Lee S H, Sim S J, Jin B S, et al. Materials Letters, 2020, 270,127615.
22 He P L, Li Kun, Zhang Y, et al. ACS Applied Materials & Interfaces, 2020, 12(25),28253.
23 Harlow E J, Ma X W, Li J, et al. Journal of The Electrochemical Society, 2019, 166(13),A3031.
[1] 尹华伟, 胡传波, 姚鑫, 陈琪雅, 胡雷, 卢增辉. 二维平移法小尺寸KDP单晶生长溶液流动与传质模拟[J]. 材料导报, 2021, 35(12): 12032-12038.
[2] 单国雷, 王龙, 孙元, 陈振斌, 李晓明, 张洪宇, 裴逍遥. 镍基单晶高温合金资源中关键金属的浸出行为研究[J]. 材料导报, 2021, 35(10): 10134-10140.
[3] 李飘, 姚卫星. 镍基单晶合金低周机械疲劳寿命模型评述[J]. 材料导报, 2020, 34(9): 9124-9131.
[4] 张玉, 刘施峰, 李利娟, 祝佳林, 邓超. 晶粒取向及氧化电压对阳极氧化Ta2O5纳米管形貌的影响[J]. 材料导报, 2020, 34(8): 8010-8013.
[5] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[6] 吴坚, 李建营, 李绍敏, 刘昊. 均匀沉淀法助力Li2ZrO3包覆LiNi0.85Co0.1Mn0.05O2提升电化学性能[J]. 材料导报, 2020, 34(6): 6015-6019.
[7] 王晓娟,刘林,黄太文,杨文超,岳全召,霍苗,张军,傅恒志. 碳对镍基单晶高温合金凝固缺陷影响的研究进展[J]. 材料导报, 2020, 34(3): 3148-3156.
[8] 刘杭, 李明伟, 王鹏飞, 胡志涛, 尹华伟. 二维圆周平动法ADP单晶生长流动与传质数值模拟[J]. 材料导报, 2020, 34(20): 20022-20027.
[9] 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
[10] 陈洁, 张忻, 刘洪亮, 肖怡新, 李凡, 冯琦, 赵伟康, 刘燕琴, 张久兴. 七铝酸十二钙电子化合物研究进展[J]. 材料导报, 2020, 34(13): 13076-13083.
[11] 黄勇, 冉小龙, 严晓娟. 压缩量对单晶铜冷压焊接接头组织及性能的影响[J]. 材料导报, 2020, 34(12): 12110-12114.
[12] 邓亚, 张宇民, 周玉锋, 王伟. 碳化硅单晶材料残余应力检测技术研究进展[J]. 材料导报, 2019, 33(Z2): 206-209.
[13] 吕菲, 田原, 宋晶, 杨春颖, 刘雪松. 化学腐蚀工艺对锗单晶片机械强度的影响[J]. 材料导报, 2019, 33(Z2): 428-430.
[14] 岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
[15] 盛传德, 熊新红, 朱超, 戴彭丹, 章桥新. 添加气膜孔对镍基单晶合金DD6蠕变寿命的影响[J]. 材料导报, 2019, 33(22): 3768-3771.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed