Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3148-3156    https://doi.org/10.11896/cldb.19010098
  金属与金属基复合材料 |
碳对镍基单晶高温合金凝固缺陷影响的研究进展
王晓娟1,2,刘林1,,黄太文1,杨文超1,岳全召1,霍苗1,张军1,傅恒志1
1 西北工业大学凝固技术国家重点实验室,西安710072
2 西安工程大学理学院,西安710048
A Review on the Influence of Carbon Addition on the Solidification Defects in Nickel-based Single Crystal Superalloys
WANG Xiaojuan1,2,LIU Lin1,,HUANG Taiwen1,YANG Wenchao1,YUE Quanzhao1,HUO Miao1,ZHANG Jun1,FU Hengzhi1
1 State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi'an 710072,China
2 School of Science,Xi'an Polytechnic University,Xi'an 710048,China
下载:  全 文 ( PDF ) ( 22206KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍基单晶高温合金因优异的高温力学性能而被广泛应用于先进航空发动机的涡轮叶片和导向叶片等热端部件中。近几十年来,随着单晶高温合金的发展,合金代次已由最初的第一代发展到第五代。在单晶高温合金逐代更替的过程中,一方面微量元素碳由最初的完全去除发展到后来的限量使用,另一方面难熔元素(W、Mo、Ta和Re)的加入量逐渐增加。这是因为碳的加入可以减少氧化物,提高合金的纯净度,改善合金的可铸性,其主要的作用是控制由难熔元素增加所引起的雀斑、缩松、杂晶和小角度晶界等凝固组织缺陷。目前,碳对镍基单晶高温合金中凝固缺陷影响的研究取得了一些进展,但也存在一定问题。研究表明雀斑的形成是糊状区液态金属流动所导致的枝晶生长停滞或枝晶熔断,通过碳的添加减缓液态金属流动以抑制雀斑的形成,但这一研究仅停留在定性阶段,在定量上仅有一些经验公式和判据,关于碳化物在糊状区的析出时间与析出量如何影响热质流动的证据欠缺,需进一步完善。研究发现缩松是凝固过程中固相和液相收缩率不同所引起的枝晶间的微小熔池,碳添加形成的适量碳化物可以通过后期生长填补枝晶间的孔洞以减少缩松,但此研究也只停留在实验现象和笼统的定性说明阶段,具体到碳化物添加量和缩松含量之间的关系还没有明确的规律,还需要深入探究。杂晶的形成与枝晶碎片、模壁过冷形核和籽晶回熔有关,碳的添加可以抑制热质流动,减少枝晶碎片,降低过冷形核,避免杂晶生成。小角度晶界的产生是由于枝晶弯曲和扭转变形,与热质流动无关,微量元素碳的添加虽然不能阻止这类缺陷出现,但可以起到晶界强化作用。目前,碳对杂晶和小角度晶界的影响无论从实验现象还是机理分析都非常欠缺,需要系统地进行研究。本文综述了碳对镍基单晶高温合金中凝固缺陷影响的研究进展,重点阐述了碳对凝固组织缺陷的影响规律以及机制,并提出了存在的问题及今后的研究趋势,以期为提高高温合金的力学性能和产品合格率奠定理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓娟
刘林
黄太文
杨文超
岳全召
霍苗
张军
傅恒志
关键词:  镍基单晶高温合金    凝固缺陷    
Abstract: Nickel-based single crystal superalloy has been widely used in the turbine blade of advanced aircraft engine, due to its characteristic of high temperature resistance and excellent mechanical properties. In order to further improve the high temperature performance, the trace element carbon is completely removed from the initial and then uses in limited quantities, meanwhile the total amount of refractory elements(Re, W, Mo and Ta) addition is gradually increased in modern nickel-based superalloys. The addition of carbon can reduce oxides, improve the purity and castability of alloys. Moreover, it is more important that the addition of carbon can control the solidification defects such as freckles, microporosities, stray grains and low angle grain boundaries, which are caused by the increase of refractory elements.
At present, some progress has been made in the study of the effect of carbon about the solidification defects in the nickel-based single crystal superalloys. However, there are still some problems. During directional solidification,the fluid flow within the mushy zone of solid and liquid causes the stagnation of dendritic growth or dendritic melting, which results in the formation of freckle defects. The density difference caused by the segregation of solute elements results in the lower density liquid at the bottom of the interdendritic region flowing to the top of mushy zone. The rise of segregation coefficients of the refractory elements is followed by the fall with the increase of carbon content, which could offset the density diffe-rence and suppress the thermal solutal convection. The tendency of freckle formation is reduced. However, the evidences of the relationship between the time and quantities of carbides precipitation and thermosolutal convection are quite absent. So it is necessary for further research. The formation of microporosities is mainly due to the present of tiny molten pools in interdendritic areas, which is attributed to the difference in the shrinkage of solid and liquid phases in the course of directional solidification. The addition of minor carbon can form carbides and the approp-riate amount of carbides can fill microporosities, which makes the volume fraction of microporosities reduce. At present, the research only stays at the stage of experimental phenomena and general qualitative explanation. Specifically, the relationship between the quantities of carbide addition and microporosity content is not completely clear, so it has attracted much attention.
The formation of stray grains is related to the dendritic fragments, supercooled nucleation on mould wall andseed crystal remelting. The addition of minor carbon can suppress thermosolutal convection, reduce dendritic fragments and supercooled nucleation. By this ways, the formation of stray grains can be avoided. The low angle grain boundary is due to dendritic bending and torsional deformation, however it has nothing to do with thermosolutal convection. Although the addition of minor carbon can not prevent the kind of defects, it can play an important role in strengthening the grain boundary. Now the effects of carbon on the stray grains and low angle grain boundaries are very deficient in both experimental phenomena and mechanism analysis, and these need to be studied systematically.
In this paper, it reviews the research progress of carbon addition on the solidification defects in nickel-based single crystal superalloys. The types of defects, the effects of carbon on solidification microstructure defects and the mechanism of carbon impact defects are emphasized. The existing problems and future research trends are also put forward. We have confidence that it could provide a theoretical support for improving the mechanical properties of superalloy and product yield.
Key words:  nickel-based single crystal superalloy    carbon    solidification defects
                    发布日期:  2020-01-03
ZTFLH:  TG132.3  
基金资助: 国家重点研究和发展计划(2016YFB0701400);国家自然科学基金(51331005;51631008;51690160;51501152);陕西省自然科学基金(2016JQ5093);航空科学基金(2015ZE53059)
通讯作者:  linliu@nwpu.edu.cn   
作者简介:  王晓娟,于2002年7月和2007年6月分别获得陕西师范大学的理学学士学位和工学硕士学位。从2002年7月至今,工作于西安工程大学。现在西北工业大学攻读博士学位,主要从事定向凝固高温合金微观组织和力学性能的研究;刘林,西北工业大学材料学院教授、博士研究生导师。于1988年12月在西北工业大学取得工学博士学位,1990年获德国著名亚历山大·冯·洪堡奖学金,于1991—1992年在德国柏林工业大学和马克斯·普朗克金属学研究所从事客座研究,1993年起在西北工业大学应用物理系担任教授、系副主任,1995年被评为博士生导师,1996—2001年担任西北工业大学科技处处长、校学术委员会秘书长,2002年以后在西北工业大学材料学院任教授、博士生导师。长期从事航空发动机用高温金属材料以及金属凝固理论和技术等方面的研究,以第一或通讯作者身份在Scripta Materialia、Journal of Materials Science & Technology、Superalloys、Journal of Alloys and Compounds、Advanced Engineering Materials、Materials Letters等SCI学术期刊发表研究论文200余篇。主持国家863、国家973、国家自然科学基金、国家重大科技专项等项目20余项。获国家发明奖一项、省部级科学技术奖6项,获得专利13项,合作出版了《先进材料定向凝固》《航空航天材料定向凝固》等学术著作。
引用本文:    
王晓娟,刘林,黄太文,杨文超,岳全召,霍苗,张军,傅恒志. 碳对镍基单晶高温合金凝固缺陷影响的研究进展[J]. 材料导报, 2020, 34(3): 3148-3156.
WANG Xiaojuan,LIU Lin,HUANG Taiwen,YANG Wenchao,YUE Quanzhao,HUO Miao,ZHANG Jun,FU Hengzhi. A Review on the Influence of Carbon Addition on the Solidification Defects in Nickel-based Single Crystal Superalloys. Materials Reports, 2020, 34(3): 3148-3156.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010098  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3148
1 Shi C X, Li H D, Zhou L. Materials science and engineering handbook, Chemical Industry Press, China, 2004(in Chinese).
师昌绪, 李恒德, 周廉. 材料科学与工程手册,化学工业出版社, 2004.
2 Guo J T. Superalloy materials, Science Press, China, 2008(in Chinese).
郭建亭. 高温合金材料学, 科学出版社, 2008.
3 Sun X F, Jin T, Zhou Y Z, et al.Materials China, 2012, 31(12),1(in Chinese).
孙晓峰, 金涛, 周亦胄, 等.中国材料, 2012, 31(12),1.
4 Liu G, Liu L, Zhao X B, et al.Materials Review, 2008, 22(9),38(in Chinese).
刘刚, 刘林, 赵新宝, 等.材料导报, 2008, 22(9),38.
5 Erickson G L. In:The development and application of CMSX-10. Warrendale, 1996, pp. 35.
6 Giamei A F, Anton D L. Metallurgical and Materials Transactions A, 1985,16(11),1997.
7 Walston W S, Ohara K S, Ross E W, et al. In: Third generation single crystal superalloy.Warrendale, 1996, pp. 27.
8 Hobbs R A, Zhang L, Rae C M F, et al. Materials Science and Enginee-ring A, 2008,489,65.
9 Tin S, Pollock T M, Murphy W.Metallurgical and Materials Transactions A, 2001, 32,1743.
10 Tin S, Pollock T M.Journal of Materials Science, 2004, 39,7199.
11 Cao L M, Yang X Q, Xue M, et al.Journal of Material Engineering, 2012(10),8(in Chinese).
曹腊梅, 杨曦桥, 薛明, 等. 材料工程, 2012(10),8.
12 Yu Z H, Liu L, Zhao X B, et al.Foundry, 2009, 58(9),918(in Chinese).
余竹焕, 刘林, 赵新宝, 等.铸造, 2009, 58(9), 918.
13 Mihalisin J R, Corrigan J, Launsbach M, et al.In: Superalloys(the Minerals, Metals & Materials Society). Gainesville, 2004, pp.795.
14 Tin S, Pollock T M, King W T.In: Superalloys(the Minerals, Metals & Materials Society).Warrendale, 2000, pp.201.
15 Al-Jarba K A, Fuchs G E. Materials Science and Engineering A, 2004, 373,255.
16 Liu L R, Jin T, Zhao N R, et al.Materials Science and Engineering A, 2003, 361,255.
17 Liu L R, Jin T, Zhao N R, et al.Materials Science and Engineering A, 2004, 385,105.
18 Cutler E R, Wasson A J, Fuchs G E.Journal of Crystal Growth, 2009, 311,3753.
19 Fu H Z, Guo J J, Liu L, et al. Directional solidification and processing of advanced materials, Science Press, China, 2008(in Chinese).
傅恒志, 郭景杰, 刘林, 等. 先进材料定向凝固, 科学出版社, 2008.
20 Gao S F, Liu L, Hu X W, et al.Journal of Materials Science and Engineering, 2010, 28(1),145(in Chinese).
高斯峰, 刘林, 胡小武, 等. 材料科学与工程学报, 2010, 28(1),145.
21 Tin S, Pollock T M.Metallurgical and Materials Transactions A, 2003, 34,1953.
22 Beckermann C B, Gu J P, Boettinger W J.Metallurgical and Materials Transactions A, 2000, 31,2545.
23 Worster M G. Annual Review of Fluid Mechanics, 1997, 29,91.
24 Zhao X B, Liu L, Yang C B, et al.Journal of Material Engineering, 2012(1),93(in Chinese).
赵新宝, 刘林, 杨初斌, 等.材料工程, 2012(1),93.
25 Yue Q Z, Liu L, Yang W C, et al. Progress in Natural Science: Materials International, 2017, 27,236.
26 Liu L R, Jin T, Zhao N R, et al.Materials Letters, 2004, 58,2290.
27 Chen Q Z, Knowles D M.Materials Science and Technology, 2003, 19(4),447.
28 Li X W, Liu T, Wang L, et al.Materials Science and Engineering A, 2015, 639,732.
29 Li Y F, Liu L, Huang T W, et al.Materials Review A:Review Papers, 2017, 31(5),118(in Chinese).
李亚峰, 刘林, 黄太文, 等.材料导报:综述篇, 2017, 31(5),118.
30 Li Y F. Study on stray grain formation in the platform of Ni-based single crystal superalloy turbine blade. Ph.D. Thesis, Northwestern Polytechnical University, China, 2018(in Chinese).
李亚锋. 镍基单晶高温合金平台杂晶缺陷研究. 博士学位论文,西北工业大学,2018.
31 Deng A H. Concise dictionary of metallic materials, Metallurgical Industry Press, China, 1992(in Chinese).
邓安华. 金属材料简明辞典, 冶金工业出版社, 1992.
32 Liu Z E. Materials science & engineering textbooks for higher education, Northwestern Polytechnical University Press, China, 2003(in Chinese).
刘智恩. 材料科学基础, 西北工业大学出版社, 2003.
33 Shi Z X, Li J R, Liu S Z, et al.Rare Metal Material and Engineering, 2011, 40(12),2117(in Chinese).
史振学, 李嘉荣, 刘世忠, 等.稀有金属材料与工程, 2011, 40(12),2117.
34 Li Y F, Liu L, Sun D J, et al. Journal of Alloys and Compounds, 2019, 773,432.
35 Li Y F, Liu L, Huang T W, et al. Vacuum, 2016, 131,181.
36 Yang C B, Liu L, Zhao X B, et al. Journal of Alloys and Compounds, 2013, 578,577.
37 Liang Y J, Wang H M. Materials and Design, 2016, 102,297.
38 Hu S S, Liu L, Yang W C, et al. Journal of Alloys and Compounds, 2018, 735,1878.
39 Sun D J, Liu L, Huang T W, et al. Progress in Natural Science: Mate-rials International, 2018, 28,489.
40 Huo M, Liu L, Yang W C, et al.Vacuum, 2019, 161,29.
41 Yang W C, Hu S S, Huo M, et al.Journal of Materials Research and Technology, 2019, 8(1), 1347.
42 Jiao J J. The effects of dendritic orientation and alloy composition on soli-dification defects of single crystal superalloys. Mater's Thesis,Northwes-tern Polytechnical University, China, 2015(in Chinese).
焦娟娟. 单晶高温合金晶体取向及合金成分对凝固缺陷影响研究. 硕士学位论文,西北工业大学,2015.
43 Ma D X, Wang F, Wen X H, et al.Acta Metallurgica Sinica, 2017, 53(12),1603(in Chinese).
马德新, 王富, 温序晖, 等.金属学报, 2017, 53(12),1603.
44 Hu Q, Liu L, Zhao X B, et al.Transactions Nonferrous Metals Society of China, 2013, 23,3257.
45 Wang L, Wang D, Liu T, et al.Materials Characterization, 2015, 104,81.
46 Caldwell E C, Fela F J, Fuchs G E. In: Segregation of elements in high refractory content single crystal nickel based superalloys. Gainesville, 2004, pp. 811.
47 Liu C B, Shen J, Zhang J, et al.Journal of Material Science and Techno-logy, 2010, 26(4),306.
48 Lecomte-Beckers J. Metallurgical and Materials Transactions A, 1988,19(9),2333.
49 Yu Z H. Effect of carbon addition on the solidification microstructure and mechanical roperties of single crystal superalloys. Ph.D.Thesis, Northwestern Polytechnical University, 2011(in Chinese).
余竹焕. 碳对单晶高温合金凝固组织及力学性能的影响. 博士学位论文,西北工业大学,2011.
50 Zhou Y Z, Volek A.Materials Science & Engineering A, 2008, 479,324.
51 Liu G. Effect of rhenium and ruthenium on the solidification characteristics and microstructure of Nickel-based single crystal superalloys. Ph.D.Thesis, Northwestern Polytechnical University, China, 2011(in Chinese).
刘刚. 铼和钌对单晶高温合金凝固特性和组织的影响. 博士学位论文,西北工业大学,2011.
52 Chen X Y, Jin Z, Bai X F, et al. Acta Metallurgica Sinica, 2015, 51(7),853(in Chinese).
陈晓燕, 金喆, 白雪峰, 等.金属学报, 2015, 51(7),853.
53 Ma D X.Acta Metallurgica Sinica, 2016, 52(4),426(in Chinese).
马德新.金属学报, 2016, 52(4),426.
54 Tin S, Pollock T M.Metallurgical and Materials Transactions A, 2003, 34,1953.
55 Tin S, Pollock T M.Materials Science and Engineering A, 2003, 348,111.
56 Cutler E R, Wasson A J, Fuchs G E.Scripta Materialia, 2008, 58,146.
57 Feng G Z, Shen J, Zou M J, et al. Foundry, 2009, 58(5),427(in Chinese).
冯广召, 沈军, 邹敏佳, 等.铸造, 2009, 58(5),427.
58 Gao S F, Xiao J F, Nan Q, et al.Hot Working Technology, 2016, 45(19),70(in Chinese).
高斯峰, 肖俊峰, 南晴, 等.热加工工艺, 2016, 45(19),70.
59 Meyer M, Dedecke D, Paul U.In:Superalloys(the Minerals, Metals & Materials Society). Warrendale, 1996,pp.471.
60 Ma D X, Zhang Q Y, Wang H Y, et al.Foundry, 2017, 66(5),439(in Chinese).
马德新, 张琼元, 王海洋, 等.铸造, 2017, 66(5),439.
61 Zhou Y Z.Scripta Materialia, 2011, 65,281.
62 Zhao X L, Zhou Y Z, Jin T, et al.Acta Metallurgica Sinica, 2012, 48(10),1229(in Chinese).
张小丽, 周亦胄, 金涛, 等. 金属学报, 2012, 48(10),1229.
63 D'Souza N, Newell M, Devendra K, et al.Materials Science and Enginee-ring A, 2005, S413-414,413.
64 Aveson J W, Tennant P A, Foss B J, et al.Acta Materialia, 2013, 61,5162.
65 Napolitano R E, Schaefer R J.Journal of Materials Science, 2000, 35,1641.
66 Jo C Y, Kim D H, Yoo Y S, et al.Materials Science Forum, 2005, 486-487,460.
67 Hu Q. Effect of carbon and boron on the solidification characteristics and microstructure of a directionally solidified superalloy bearing with rhe-nium. Mater's Thesis, Northwestern Polytechnical University, China, 2013(in Chinese).
胡勤. 碳和硼对定向高温合金凝固特性和组织的影响. 硕士学位论文,西北工业大学,2013.
68 Liu Z Y, Lei Y, Fu H Z. Acta Metallurgica Sinica, 2000, 36(1),1(in Chinese).
刘志义, 雷毅, 傅恒志. 金属学报, 2000, 36(1),1.
69 Guo J T.The Chinese Journal of Nonferrous Metals, 2011(3),465(in Chinese).
[1] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[2] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[3] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[4] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[5] 岳先会,金鑫,谷成. 碳材料促进硝基/卤素取代类有机污染物还原降解的研究进展[J]. 材料导报, 2020, 34(3): 3028-3036.
[6] 张英杰,吴昊,曾晓苑,李雪,董鹏,肖杰. 直接碳固体氧化物燃料电池阳极材料的研究进展[J]. 材料导报, 2020, 34(3): 3090-3098.
[7] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[8] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[9] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[10] 宋国林, 张泽, 沈成柱, 范鑫, 谢俊伟, 唐国翌. 低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2): 2052-2057.
[11] 李焕焕, 张东东, 许子昂, 董瑶, 赵义平, 陈莉. 荧光碳点改性无纺布的制备及在汞(Ⅱ)检测中的应用[J]. 材料导报, 2020, 34(2): 2163-2168.
[12] 杨磊, 杨志, 连锋. 碳量子点作为生物相容性发光材料在再生医学方面的应用[J]. 材料导报, 2019, 33(Z2): 1-9.
[13] 欧先国, 周玉山, 毛文峰, 顾晓瑜, 长世勇, 裴锋. 多孔碳添加量对溶胶凝胶-碳热还原法制备磷酸钒锂正极材料的电化学影响[J]. 材料导报, 2019, 33(Z2): 38-42.
[14] 邓亚, 张宇民, 周玉锋, 王伟. 碳化硅单晶材料残余应力检测技术研究进展[J]. 材料导报, 2019, 33(Z2): 206-209.
[15] 张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed