Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3028-3036    https://doi.org/10.11896/cldb.19030083
  材料与可持续发展(三)—环境友好材料与环境修复材料 |
碳材料促进硝基/卤素取代类有机污染物还原降解的研究进展
岳先会1,金鑫1,2,谷成1,
1 南京大学环境学院,污染控制与资源化国家重点实验室,南京210023
2 中国科学院南京土壤研究所,土壤环境与污染修复重点实验室,南京210008
Carbon Materials on Promoting Reductive Degradation of Nitro-/Halo-substituted Organic Pollutants:A Review
YUE Xianhui1,JIN Xin1,2,GU Cheng1,
1 State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment of Nanjing University,Nanjing 210023,China
2 Key Laboratory of Soil Environment and Pollution Remediation,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China
下载:  全 文 ( PDF ) ( 6631KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳材料,包括纳米碳(石墨烯、碳纳米管等)和无定形碳(活性炭、生物炭和黑炭等),因其比表面积大、表面性质各异、导电储电性能优异,已被广泛应用于化工、能源、环保等领域。在环境应用中碳材料主要被用作吸附剂,但近十年来,碳材料作为电子传递介质与环境中多种电子供体(硫化物、产电微生物等)和电子受体(有机污染物、≡FeIII等)的相互作用逐渐成为环境领域的研究热点。研究碳材料的电子传递过程和控制机理,对于理解和开发其在环境过程和环境修复中的作用意义重大。现有的相关研究主要集中在碳材料促进硫还原和微生物还原系统中硝基芳香类(NACs)和卤代烃类(R-X)污染物的还原降解,然而,碳材料的作用机理受电子供体种类、污染物性质和碳材料表面特征等因素影响,其发生机理各不相同,目前已被广泛认知的机制主要有以下三种:(1)碳材料表面官能团(如醌类)作为氧化还原媒介,提高电子传递效率;(2)碳材料的石墨化结构和表面缺陷位的导电作用,能够高效传导电子;(3)在硫化物还原体系中,吸附态S2-在碳表面形成的中间体作为还原活性位点,加速污染物的还原。此外,碳材料比表面积、孔隙度和表面电性的差异,有机污染物自身结构性质的差异,含碳体系(生物、非生物)的差异等因素也会直接或间接地影响碳材料对有机污染物催化还原降解的主控机理。由于碳材料自身结构和表面性质的复杂性,现有研究对该类过程的机理认知还不完整。本文系统地梳理了国内外有关碳材料介导NACs和R-X类有机污染物还原降解过程的作用机理,列举了依据现有的机理认知来提高碳材料性能的改性技术及其应用。对纳米碳材料而言,表面修饰和表面掺杂等通常能提高其传质效率和能量利用效率;对于多孔碳材料而言,化学活化(H3PO4或 ZnCl2)和热处理等手段能增大碳材料比表面积,提高其导电性和电子储存能力,从而加强碳材料对NACs和R-X的催化降解效果,为应用碳材料修复地下水环境污染提供理论依据。碳材料促进有机污染物转化的现实意义在于:一方面,自然界中存在多种碳的形态,将直接或间接影响环境中有机物的迁移转化和元素循环;另一方面,碳材料具有环境友好性,其对有机污染物的催化降解作用在环境修复中具有巨大的应用潜力。碳材料也有望在今后的环境功能材料方面发挥更大的作用,为地下水中NACs和R-X的去除提供新的理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
岳先会
金鑫
谷成
关键词:  碳材料  电子传递机制  硝基苯类  卤代类  氧化还原    
Abstract: Due to the advantages of high surface area, heterogeneous surface properties, excellent electron conductivity and electron storage capacity, carbon materials, including nano-carbon (e.g. graphene, carbon nano-tube, etc.) and amorphous carbon (including active carbon, biochar and black carbon, etc.) has been largely used in chemical industry, energy conservation, and environmental protection. In environmental application, carbon materials were mostly used as adsorbents. While in the last decade, carbon materials as the electron shuttle or redox mediator to facilitate electron transfer from electron donors (e.g. sulfide, iron/sulfide-reducing bacteria, etc) to electron acceptors (e.g. organic compounds, ≡FeIII, etc) has received increasingly concern. The electron transfer mechanisms by carbon materials are essential to the understanding of the environmental processes of organic pollutants and to the development of environmental remediation technologies for those compounds.
Current researches mostly focused on the performance of carbon materials to the reductive transformation of nitro-aromatic compounds (NACs) and halo-substituted organic compounds (R-X). However, the mechanisms are varied depending on the properties of electron donors, organic compounds and carbon materials. Generally, three mechanisms have been accepted in different systems: Ⅰ. The oxygen functional groups on carbon surface play as the redox mediators to facilitate electron transfer. Ⅱ. The graphitic region and defect sites of carbon surface are highly conductive for electron transfer. Ⅲ. In the sulfide reduction conditions, carbon-sulfide intermediates would be the reactive sites for reductive degradation. In addition, surface area, porous structure and surface electric heterogeneous of carbon materials, as well as the structural properties of organic pollutants, the biotic/abiotic reaction systems would directly or indirectly influence the principle mechanisms. Since the matrix and surface of carbon materials have heterogeneous and complicated properties, the properties which control the electron transfer process have not yet fully understood. This review summarizes the reaction mechanisms that carbon materials mediated reductive transformation of NACs and R-X, upon which basis, modifications of carbon materials to further enhance the catalytic performance are also mentioned with the aim of application purposes. For the nano-carbon materials, surface modification and surface doping usually can facilitate the mass transfer efficiency and energy utilizing efficiency. For the porous carbon, chemical activation (by H3PO4 or ZnCl2) and thermal activation would induce porous structure, large surface area, high electric conductivity and electron storage capacity. All of those modifications make the carbon materials more efficiently to catalyst NACs and R-X reduction degradation. It provides theoretical guidelines for the extensive requirement in groundwater remediation.
The environmental significance of this process stands on first, multi-forms of carbon in nature would directly or indirectly influence the environmental fate of organic compounds and element cycling. Second, carbon materials have great potential for the application in environmental reme-diation as for its environmental friendliness. It is expected that carbon materials could play more significant roles as the environmentally functional materials, for the elimination of NACs and R-X in anoxic groundwater.
Key words:  carbon materials    electron transfer mechanism    nitro-aromatic compounds    halo-substituted organic compounds    redox process
                    发布日期:  2020-01-03
ZTFLH:  X703  
基金资助: 江苏省自然科学基金青年基金(BK20170634);中国科学院南京土壤研究所土壤环境与污染修复院重点实验室开放基金(SEPR2017-08)
通讯作者:  chenggu@nju.edu.cn   
作者简介:  岳先会,2016年6月毕业于贵州大学,获理学学士学位。现为南京大学环境学院研究生,在谷成教授的指导下进行研究。目前主要研究领域为改性生物炭介导硝基芳香族化合物还原转化的机理研究;谷成,南京大学教授、博士生导师。2006年获美国威斯康星麦迪逊分校博士学位。2006—2011年在美国密歇根州立大学进行博士后研究工作。2012年入选“中组部第二批青年千人计划”,并获国家自然基金优秀青年科学基金资助。主要研究方向为污染物及生物分子的环境界面行为以及基于天然粘土为模板的新型纳米材料的合成。近五年来在Environmental Science & Technology(ES&T)等期刊发表40余篇SCI论文。
引用本文:    
岳先会,金鑫,谷成. 碳材料促进硝基/卤素取代类有机污染物还原降解的研究进展[J]. 材料导报, 2020, 34(3): 3028-3036.
YUE Xianhui,JIN Xin,GU Cheng. Carbon Materials on Promoting Reductive Degradation of Nitro-/Halo-substituted Organic Pollutants:A Review. Materials Reports, 2020, 34(3): 3028-3036.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030083  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3028
1 Javey A, Guo J, Wang Q, et al. B Nature,2003, 424(6949), 654.
2 Gao J, Loo Y L. Advanced Functional Materials, 2015, 25(1), 105.
3 Berber S, Kwon Y K, Tomanek D. Physical Review Letters, 2000, 84(20), 4613.
4 Peigney A, Laurent C, Flahaut E, et al. Carbon, 2001, 39(4), 507.
5 Yu M F, Lourie O, Dyer M J, et al. Science, 2000, 287(5453), 637.
6 Lee C, Wei X, Kysar J W, et al. Science, 2008, 321(5887), 385.
7 Li F, Jiang X, Zhao J, et al. Nano Energy, 2015, 16, 488.
8 Chen W, Zhu D, Zheng S, et al. Environmental Science & Technology, 2014, 48(7), 3856.
9 Conesa J A, Sakurai M, Antal M J. Carbon, 2000, 38(6), 839.
10 Chen B, Yuan M, Qian L.Journal of Soils and Sediments, 2012, 12(9), 1350.
11 Chen S, Rotaru A E, Shrestha P M, et al. Scientific Reports. 2014, 4, 5019.
12 Han L, Ro K S, Sun K, et al. Environmental Science & Technology, 2016, 50(24), 13274.
13 Xiao X, Chen B. Environmental Science & Technology, 2017, 51(10), 5473.
14 Lyu T, Wu S, Hong H, et al.Bioresource Technology, 2013, 133, 529.
15 Zhu H, Ke X, Yang X, et al. Angewandte Chemie-International Edition,2010, 49(50), 9657.
16 Huang J, Wen Y, Ding N, et al.Water Research, 2012, 46(14), 4361.
17 Sang Y, Wang B, Wang Q, et al. Scientific Reports, 2014, 4,6321.
18 Wang A J, Cheng H Y, Liang B, et al. Environmental Science & Techno-logy,2011, 45(23), 10186.
19 Wang A J, Cui D, Cheng H Y, et al. Journal of Hazardous Materials,2012, 199, 401.
20 Vogel T M, Criddle C S, McCarty P L. Environmental Science & Techno-logy, 1987, 21(8), 722.
21 Weisburger E K. Environmental Health Perspectives, 1977, 21(DEC), 7.
22 Jugder B E, Bohl S, Lebhar H, et al. Microbial Biotechnology,2017, 10(6), 1640.
23 Vickstrom K E, Azizian M F, Semprini L.Chemosphere,2017, 182, 65.
24 Heckel B, Phillips E, Edwards E, et al. Environmental Science & Technology, 2019, 53(5), 2332.
25 Zhu Y, Wu M, Gao N, et al.Chemical Engineering Journal, 2019, 357, 75.
26 Wikstrom M, Krab K, Sharma V.Chemical Reviews, 2018, 118(5), 2469.
27 Schwarzenbach R P, Stierli R, Lanz K, et al.Environmental Science & Technology,1990, 24(10), 1566.
28 Dunnivant F M, Schwarzenbach R P, Macalady D L. Environmental Science & Technology, 1992, 26(11), 2133.
29 Van der Zee F P, Bisschops I A E, Lettinga G, et al. Environmental Science & Technology, 2003, 37(2), 402.
30 Fu H, Zhu D.Environmental Science & Technology, 2013, 47(9), 4204.
31 Tong H, Hu M, Li F B, et al.Soil Biology & Biochemistry, 2014, 70, 142.
32 Toral-Sanchez E, Hurt R H, Ascacio Valdes J A, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2019, 566, 188.
33 Ding L, Zhang P, Luo H, et al. Environmental Science & Technology, 2018, 52(24), 14286.
34 Liu F, Rotaru A E, Shrestha P M, et al. Energy & Environmental Science, 2012, 5(10), 8982.
35 Yan J, Han L, Gao W, et al. Bioresource Technology,2015, 175, 269.
36 Vogel M, Kopinke F D, Mackenzie K. Science of the Total Environment,2019, 660, 1274.
37 Kemper J M, Ammar E, Mitch W A. Environmental Science & Technology,2008, 42(6), 2118.
38 Xu W, Dana K E, Mitch W A.Environmental Science & Technology,2010, 44(16), 6409.
39 Xu W, Pignatello J J, Mitch W A.Environmental Science & Technology,2013, 47(13), 7129.
40 Sun T, Levin B D A, Guzman J J L, et al. Nature Communications, 2017, 8, 14873.
41 Zhao H Q, Liu Q, Wang YX, et al. Chemical Engineering Journal,2018, 351, 912.
42 Lovley D R, Coates J D, BluntHarris E L, et al. Nature,1996, 382(6590), 445.
43 Scott D T, McKnight D M, Blunt-Harris EL, et al. Environmental Science & Technology, 1998, 32(19), 2984.
44 Rau J, Knackmuss H J, Stolz A. Environmental Science & Technology,2002, 36(7), 1497.
45 Yu X, Gong W, Liu X, et al. Journal of Hazardous Materials, 2011, 198, 340.
46 Amezquita-Garcia H J, Razo-Flores E, Cervantes F J, et al.Carbon, 2013, 55, 276.
47 Yu L, Yuan Y, Tang J, et al.Scientific Reports, 2015, 5 16221.
48 Uchimiya M, Franzluebbers A J, Liu Z, et al. Aquatic Geochemistry, 2018, 24(5-6), 345.
49 Uchimiya M, Orlov A, Ramakrishnan G, et al.Journal of Analytical and Applied Pyrolysis, 2013, 102, 53.
50 Boehm H P. Carbon, 1994, 32(5), 759.
51 Kluepfel L, Keiluweit M, Kleber M, et al. Environmental Science & Technology, 2014, 48(10), 5601.
52 Prevoteau A, Ronsse F, Cid I, et al. Scientific Reports, 2016, 6, 32870.
53 Xin D, Xian M, Chiu PC. Chemosphere,2019, 215, 827.
54 Wu S, Fang G, Wang Y, et al. Environmental Science & Technology,2017, 51(17), 9709.
55 Pereira L, Pereira R, Pereira M F R, et al. Biotechnology and Bioengineering,2016, 113(6), 1194.
56 Toral-Sanchez E, Rene Rangel-Mendez J, Ascacio Valdes J A, et al. Bioresource Technology, 2017, 223, 269.
57 Wang L, Mu G, Tian C, et al. ChemSusChem, 2013, 6(5), 880.
58 Yan F F, He Y R, Wu C, et al.Environmental Science & Technology Letters,2014, 1(1), 128.
59 Colunga A, Rene Rangel-Mendez J, Celis L B, et al. Bioresource Techno-logy, 2015, 175, 309.
60 Xu W, Pignatello J J, Mitch W A.Environmental Science & Technology, 2015, 49(6), 3419.
61 Fu H, Guo Y, Chen W, et al. Carbon, 2014, 72, 74.
62 Yuan W, Zhou Y, Li Y, et al.Scientific Reports, 2013, 3, 2248.
63 Banks C E, Davies T J, Wildgoose G G, et al. Chemical Communications, 2005, 7, 829.
64 Ritter K A, Lyding J W. Nature Materials, 2009, 8(3), 235.
65 Gao Y, Ma D, Wang C, et al. Chemical Communications, 2011, 47(8), 2432.
66 Zhang J, Liu X, Blume R, et al.Science,2008, 322(5898), 73.
67 Chen X, Chen B. Environmental Science & Technology, 2015, 49(10), 6181.
68 Oh S Y, Son J G, Lim O T, et al. Environmental Geochemistry and Health,2012, 34, 105.
69 Oh S Y, Chiu P C. Environmental Science & Technology, 2009, 43(18), 6983.
70 Gong W, Liu X, Tao L, et al. Environmental Science and Pollution Research, 2014, 21(9), 6162.
71 Rhim Y R, Zhang D, Fairbrother D H, et al. Carbon,2010, 48(4), 1012.
72 Pereira R A, Pereira M F R, Alves M M, et al.Applied Catalysis B-Environmental,2014, 144, 713.
73 Kappler A, Wuestner M L, Ruecker A, et al.Environmental Science & Technology Letters, 2014, 1(8), 339.
74 Saquing J M, Yu Y H, Chiu P C. Environmental Science & Technology Letters, 2016, 3(2), 62.
75 Gong W, Liu X, Xia S, et al. Journal of Hazardous Materials, 2016, 310, 125.
76 Jbarah A A, Holze R. Journal of Solid State Electrochemistry, 2006, 10(6), 360.
77 Murillo-Gelvez J, Hickey K P, Di Toro D M, et al. Environmental Science & Technology,2019, 53(10), 5816.
78 Luan F, Gorski C A, Burgos W D. Environmental Science & Technology, 2015, 49(6), 3557.
79 Nivinskas H, Koder R L, Anusevicius Z, et al. Archives of Biochemistry and Biophysics,2001, 385(1), 170.
80 Ding K, Xu W. Environmental Science & Technology, 2016, 50(23), 12976.
81 Zhao H Q, Huang S Q, Xu W Q, et al. Environmental Science & Techno-logy, 2019, 53(8), 4397.
82 Pinto A M, Goncalves I C, Magalhaes F D. Colloids and Surfaces B-Biointerfaces,2013, 111, 188.
83 Wang J, Wang D, Liu G, et al. Journal of Chemical Technology and Biotechnology, 2014, 89(5), 750.
84 Chen P H, McCreery R L. Analytical Chemistry,1996, 68(22), 3958.
85 Xu Y, Bai H, Lu G, et al.Journal of the American Chemical Society, 2008, 130(18), 5856.
86 Johns J E, Hersam M C. Accounts of Chemical Research, 2013, 46(1), 77.
87 Wang H I, Infante I, Brinck S T, et al.Nano Letter,2018, 18(8), 5111.
88 Campisciano V, Gruttadauria M, Giacalone F. ChemCatChem,2019, 11(1), 90.
89 Nagaraju K, Reddy R, Reddy N. Journal of Applied Biomaterials & Functional Materials, 2015, 13(4), E301.
90 Zhou Y, Fang Y, Ramasamy R P. Sensors, 2019, 19(2), 392.
91 Song J, Kang S W, Lee Y W, et al. ACS Applied Materials & Interfaces,2017, 9(2), 1692.
92 Liu X, Wang C, Cheng S, et al. Catalysis Communications,2018, 108, 103.
93 Dongil A B, Pastor-Perez L, Fierro J L G, et al.Applied Catalysis A-General, 2016, 513, 89.
94 Wu T, Zhang L, Gao J, et al.Journal of Materials Chemistry A, 2013, 1(25), 7384.
95 Machado B F, Serp P. Catalysis Science & Technology,2012, 2(1), 54.
96 Huang J, Zhang L M, Chen B A, et al. Nanoscale,2010, 2(12), 2733.
97 Fowles M. Biomass & Bioenergy, 2007, 31(6), 426.
98 Manya J J. Environmental Science & Technology, 2012, 46(15), 7939.
99 Meyer S, Glaser B, Quicker P. Environmental Science & Technology,2011, 45(22), 9473.
100 Jagtoyen M, Derbyshire F. Carbon, 1998, 36(7-8), 1085.
101 Liu W J, Jiang H, Yu H Q. Chemical Reviews,2015, 115(22), 12251.
102 Hulicova-Jurcakova D, Puziy A M, Poddubnaya O I, et al. Journal of the American Chemical Society, 2009, 131(14), 5026.
103 Chu G, Zhao J, Huang Y, et al. Environmental Pollution, 2018, 240, 1.
104 Nieva Lobos M L, Manuel Sieben J, Comignani V, et al. International Journal of Hydrogen Energy,2016, 41(25), 10695.
105 Sun L, Tian C, Li M, et al.Journal of Materials Chemistry A, 2013, 1(21), 6462.
106 Johnson M T, Faber K T. Journal of Mate-rials Research, 2011, 26(1), 18.
107 Ramirez-Rico J, Gutierrez-Pardo A, Martinez-Fernandez J, et al. Mate-rials & Design,2016, 99, 528.
108 Gutierrez-Pardo A, Ramirez-Rico J, de Arellano-Lopez A R, et al. Journal of Materials Science, 2014, 49(22), 7688.
109 Chen C, Sun K, Wang A, et al. Bioresources,2018, 13(2), 3165.
110 Zhou N, Li L, Chen S, et al.Journal of Materials Science, 2019, 54(5), 4168.
111 Hoekstra J, Beale A M, Soulimani F, et al. Carbon, 2016, 107, 248.
112 Thompson E, Danks A E, Bourgeois L, et al. Green Chemistry,2015, 17(1), 551.
113 Xu D, Zhang D, Zou H, et al.Chemical Communications, 2016, 52(69), 10513.
114 Jin L, Zhao X, Ye J, et al. Catalysis Communications,2018, 107, 43.
115 Hu X, Wang Y, Ding B, et al. Journal of Alloys and Compounds, 2019, 785, 110.
116 Frackowiak E, Lota G, Machnikowski J, et al. Electrochimica Acta, 2006, 51(11), 2209.
117 Guo H, Gao Q. Journal of Power Sources,2009, 186(2), 551.
118 Wu J, Jin C, Yang Z, et al.Carbon, 2015, 82, 562.
119 Li W, Zhou M, Li H, et al. Energy & Environmental Science, 2015, 8(10), 2916.
120 Gao J, Wang X, Zhang Y, et al. Electrochimica Acta,2016, 207, 266.
121 Fujita S I, Watanabe H, Katagiri A, et al. Journal of Molecular Catalysis A-Chemical, 2014, 393, 257.
122 Liu N, Ding L, Li H, et al. Journal of Colloid and Interface Science, 2017, 490, 677.
123 Yang Y, Zhang W, Ma X, et al. ChemCatChem, 2015, 7(21), 3454.
124 Yang F, Wang M, Liu W, et al. Green Chemistry, 2019, 21(3), 704.
125 Zhou Z, Sun H, Zhang W. Environmental Pollution,2010, 158(5), 1916.
126 Mia S, Dijkstra F A, Singh B. Environmental Science & Technology,2017, 51(15), 8359.
127 Logan B E, Rabaey K. Science,2012, 337(6095), 686.
[1] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[2] 岳瑞瑞, 王会才, 刘霞平, 杨继斌, 汪振文. 可拉伸超级电容器碳基复合电极材料的研究进展[J]. 材料导报, 2019, 33(21): 3580-3587.
[3] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[4] 李通, 李金权, 王文广, 倪丁瑞. 影响碳/金属复合材料导热性能的主要因素探讨[J]. 材料导报, 2018, 32(15): 2640-2646.
[5] 薛勇, 杨保平, 张斌, 张俊彦. 纳米碳材料摩擦学应用的最新进展和未来展望*[J]. 《材料导报》期刊社, 2017, 31(5): 1-8.
[6] 贾兴文, 张新, 马冬, 杨再富, 石从黎, 王智. 导电混凝土的导电性能及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 90-97.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed