Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 103-109    https://doi.org/10.11896/cldb.201901011
  材料与可持续发展(一)——面向洁净能源的先进材料 |
纳米碳材料负载过渡金属氧化物用作超级电容器电极材料
刘敏敏1,2,3†, 蔡超1†, 张志杰1, 刘睿1,3,4
1 同济大学材料科学与工程学院,先进土木工程材料教育部重点实验室,上海 201804
2 上海大学可持续能源研究院,上海 200444
3 同济大学高等研究院,上海 200092
4 中国科学院福建物质结构研究所,结构化学国家重点实验室,福州 350002
Carbon Nanomaterials Supported Transition Metal Oxides as Supercapacitor Electrodes: a Review
LIU Minmin1,2,3†, CAI Chao1†, ZHANG Zhijie1, LIU Rui1,3,4
1 Ministry of Education Key Laboratory of Advanced Civil Engineering Material, College of Materials Science and Engineering, Tongji University, Shanghai 201804
2 Institute of Sustainable Energy,Shanghai University, Shanghai 200444
3 Institute for Advanced Study, Tongji University, Shanghai 200092
4 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure, Chinese Academy of Sciences, Fuzhou 350002
下载:  全 文 ( PDF ) ( 2524KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与传统能量存储设备相比,超级电容器因具备比电容高、充放电快、绿色环保并且循环稳定性能优异等优点,在移动通信、电动汽车、国防和航空航天领域具有广阔的应用前景,已成为世界范围内的研究焦点。其中,超级电容器的电极材料是其性能的决定因素,常见的超级电容器电极材料包括碳材料、过渡金属氧化物和导电聚合物等。
   不同的电极材料的电荷储存机理不同,过渡金属氧化物具有典型的赝电容行为,依赖可逆的氧化还原反应和化学吸附/脱附过程来储存电荷,理论比电容高。然而,过渡金属氧化物同时存在导电性能差,循环稳定性不佳的缺点。碳材料主要表现双电层电容特性,依靠材料表面和电解质离子间的可逆物理吸附/脱附过程储存电荷,具有优异的倍率性能,符合实际生产和应用中对于超级电容器器件高寿命的要求,但其自身比电容相对较低。与单一属性的材料相比,复合材料往往表现出更加优异的电化学性能,大量的研究表明,过渡金属氧化物与碳材料的复合是解决上述问题的有效途径。
   碳材料因具有来源丰富、价格低廉、质量轻盈、比表面积高以及热稳定性好与电化学性能稳定等优点,日益受到重视,是构建赝电容电容器电极的首选基底材料。碳材料结构多样,近年来,零维的碳量子点、碳球,一维的碳纳米管、碳纳米纤维,二维的石墨烯、氧化石墨烯,三维的石墨烯泡沫、碳泡沫/海绵等均被成功地用于构建碳基复合电极材料,并取得了丰硕的成果。零维碳纳米材料具有高比表面积,提供了调节多孔性的灵活度,可以获得适合各自电解质溶液的最优化条件。一维碳纳米结构一般具有高长宽比和良好的电子传输性能,可以促进超级电容器电极的电荷转移。二维碳纳米结构具有比表面积大与导电性高、力学性能优良等特点,具备潜在赝电容行为,并且能增强超级电容器电极间的充放电反应动力学。利用三维导电材料作为模板,沉淀赝电容材料,可以构建高性能超级电容器电极。
   本文概述了不同维度碳材料负载过渡金属氧化物作为赝电容的电极材料及其电容性能,并对电极材料储能方面存在的不足和未来的研究方向做出了总结和展望,以期为制备性能优良、环境友好和高寿命的超级电容器提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘敏敏
蔡超
张志杰
刘睿
关键词:  关键词  纳米碳材料  过渡金属氧化物  赝电容  超级电容器    
Abstract: Compared with traditional energy storage devices, supercapacitors have been a research hot spot and diffusely adopted in the fields of mobile telecommunication, electric vehicle, aviation and national defense due to their high specific capacitance, high charge-discharge rate, environment-friendly and excellent cycling stability, etc. Among them, the electrode materials of the supercapacitors play a crucial role on their performances, and common electrode materials used for supercapacitors mainly include carbon materials, transition metal oxides, and conducting polymers.
Different materials have diverse charge storage mechanisms. Transition metal oxides exhibit typical pseudo-capacitance behavior, which depends on reversible redox reaction and chemical adsorption/desorption process to store charge. However, transition metal oxides have poor conductivity and cycle stability. Carbon materials mainly performed the characteristics of electrochemical double layer capacitance are relied on the reversible physical adsorption/desorption process between the material surface and electrolyte ions to store energy. In addition, carbon materials possess superb rate capability, conforming to the high requirements of the device lifetime for practical application, while the specific capacitance is relatively low. The composite materials generally exhibit superior electrochemical properties than that of the single component materials. Massive studies indicated that the composite of transition metal oxides and carbon materials was an effective method to solve the above-mentioned problems.
As the preferential substrate materials for the construction of pseudo-supercapacitor, carbon materials with the advantages of rich resource, low cost, light weight, high specific surface area, thermal and chemical stabilities have attracted increasingly attention. Moreover, carbon materials with various structures including zero dimensional (carbon dot and sphere), one dimensional (carbon tube and fiber), two dimensional (graphene and graphene oxide), three dimensional (graphene foam and carbon foam/sponge) carbon materials, etc, have been successfully applied to fabricate carbon-based composite electrode materials and have scored great successes, Zero-dimensional carbon nanomaterials with high specific surface area can provide flexibility to adjust porosity and obtain the optimal condition of respective electrolyte solution. One-dimensional nanostructures with high aspect ratio structure and excellent electronic or ionic transport properties can promote the charge transfer of supercapa-citor electrodes. For two-dimensional carbon nanomaterials, their high specific surface area, admirable conductivity and superb mechanical pro-perties make them a potential pseudo-supercapacitor and enhance the charge-discharge reaction kinetics between the supercapacitor electrodes. High-performance supercapacitor electrodes can be constructed by utilizing three-dimensional nanomaterials as templates and depositing pseudo-supercapacitor materials.
This article summarizes the capacitive properties of transition metal oxide loaded on different dimensional carbon materials as electrode mate-rials of pseudo-supercapacitor, and overviews their disadvantages in energy storage and future research directions, in order to provide a refe-rence for preparing a high-performance, environmental-friendly and long-life supercapacitor.
Key words:  carbon nanomaterials    transition metal oxide    pseudo-capacitance    supercapacitor
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  TB383  
  TM53  
基金资助: 结构化学国家重点实验室开放基金(20170040); 中央高校基本科研业务费专项资金(0400219376); “千人计划”青年项目
作者简介:  刘敏敏,于2016年1月在中科院长春应用化学所电分析化学研究所陈伟教授指导下获得博士学位。刘睿,同济大学材料科学与工程学院教授、博士研究生导师、中组部第十一批“千人计划”青年项目,ruiliu@tongji.edu.cn。
引用本文:    
刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
LIU Minmin, CAI Chao, ZHANG Zhijie, LIU Rui. Carbon Nanomaterials Supported Transition Metal Oxides as Supercapacitor Electrodes: a Review. Materials Reports, 2019, 33(1): 103-109.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901011  或          http://www.mater-rep.com/CN/Y2019/V33/I1/103
1 Wang F, Wu X, Yuan X, et al. Chemical Society Reviews,2017,46(22),6816.2 Winter M, Brodd R J. Chemical Reviews,2004,104,4245.3 Zhang L L, Zhao X S. Chemical Society Reviews,2009,38(9),2520.4 Zhi M, Xiang C, Li J, et al. Nanoscale,2013,5(1),72.5 Dubal D P, Ayyad O, Ruiz V, et al. Chemical Society Reviews,2015,44(7),1777.6 Pan H, Li J, Feng Y P. Nanoscale Research Letters,2010,5(3),654.7 Yu Z, Tetard L, Zhai L, et al. Energy & Environmental Science,2015,8(3),702.8 Meng Q, Cai K, Chen Y, et al. Nano Energy,2017,36,268.9 Wang J, Wang J, Kong Z, et al. Advanced Materials,2017,29(45),1703044.10 Kim M, Lee C, Jang J.Advanced Functional Materials,2014,24(17),2489.11 Raj C J, Rajesh M, Manikandan R, et al. Electrochimica Acta,2017,247,949.12 Zhang Y, Zhang H, Fang L, et al. Electrochimica Acta,2017,245,32.13 Raj C R, Bag S. Journal of Materials Chemistry A,2015,4(2),587.14 Phattharasupakun N, Wutthiprom J, Chiochan P, et al. Chemical Communications,2016,52(12),2585.15 Liang K, Tang X, Hu W. Journal of Materials Chemistry,2012,22(22),11062.16 Wu Z S, Wang D W, Ren W, et al. Advanced Functional Materials,2010,20(20),3595.17 Lin J, Liu Y, Wang Y, et al. Journal of Power Sources,2017,362,64.18 Pang H, Li X, Zhao Q, et al. Nano Energy,2017,35,138.19 Nguyen V H, Shim J J. Journal of Power Sources,2015,273,110.20 Wu P, Cheng S, Yao M, et al. Advanced Functional Materials,2017,27(34),1702160.21 Shen L, Wang J, Xu G, et al. Advanced Energy Materials,2015,5(3),1400977.22 Guan C, Liu X, Ren W, et al. Advanced Energy Materials,2017,7(8),1602391.23 Mondal A, Maiti S, Mahanty S, et al. Journal of Materials Chemistry A,2017,5(32),16854.24 He S, Chen W. Nanoscale,2015,7(16),6957.25 Li L, Wu Z, Yuan S, et al. Energy & Environmental Science,2014,7(7),2101.26 Huang G, Zhang Y, Wang L, et al. Carbon,2017,125,595.27 Tseng L H, Hsiao C H, Nguyen D D, et al. Electrochimica Acta,2018,266,284.28 Borenstein A, Hanna O, Ran A, et al. Journal of Materials Chemistry A,2017,5(25),12653.29 Chen X, Paul R, Dai L. National Science Review,2017,3,453.30 Barbieri O, Hahn M, Herzog A, et al. Carbon,2005,43(6),1303.31 Liu T, Jiang C, You W, et al. Journal of Materials Chemistry A,2017,5(18),8635.32 Chang J, Jin M, Yao F, et al. Advanced Functional Materials,2013,23(40),5074.33 Lv Z, Luo Y, Tang Y, et al. Advanced Materials,2017,30(2),1704531.34 Yuan A, Zhang Q. Electrochemistry Communications,2006,8(7),1173.35 Toupin M,Brousse T,Belanger D.Chemistry of Materials,2004,16,3184.36 Lota K, Sierczynska A, Lota G. International Journal of Electrochemistry,2011,2011,321473. 37 Ma H, He J, Xiong D B, et al. ACS Applied Materials & Interfaces,2016,8(3),1992.38 Zhu S J, Li L, Liu J B, et al. ACS Nano,2018,12(2),1033.39 Guo M, Balamurugan J, Li X, et al. Small,2017,13(33),1701275.40 Li C, Balamurugan J, Kim N H, et al. Advanced Energy Materials,2017,8(8),1702014.41 Xiong T, Tan T L, Lu L, et al. Advanced Energy Materials,2018,8(14),1702630.42 Li S, Yu C, Yang J, et al. Energy & Environmentalence,2017,10(9),1958.43 Liu W W, Feng Y Q, Yan X B, et al. Advanced Functional Materials,2013,23(33),4111.44 Peng X. Chemical Society Reviews,2014,43(10),3303.45 Wang G P, Zhang L, Zhang J J. Chemical Society Reviews,2012,41(2),797.46 Li M, Zu M, Yu J, et al. Small,2017,13(12),1602994.47 Yu N, Yin H, Zhang W, et al. Advanced Energy Materials,2016,6(2),1501458.48 Sun P, Yi H, Peng T, et al. Journal of Power Sources,2017,341,27.49 Hu C C, Wang C W, Chang K H, et al. Nanotechnology,2015,26(27),274004.50 Xie L, Su F, Xie L, et al. Chemsuschem,2015,8(17),2917.51 Han Z, Pineda S, Murdock A T, et al. Journal of Materials Chemistry A,2017,5(33),17293. 52 Liu Y, Miao X, Fang J, et al. ACS Applied Materials & Interfaces,2016,8(8),5251.53 Wang X, Wan F, Zhang L, et al. Advanced Functional Materials,2018,28(18),1707247.54 Li H, Jiang L, Cheng Q, et al. Electrochimica Acta,2015,164,252.55 He S, Hou H, Chen W. Journal of Power Sources,2015,280,678.56 Chen J, Xu J, Zhou S, et al. Nano Energy,2016,25,193.57 Du P, Liu H C, Yi C, et al. ACS Applied Materials & Interfaces,2015,7(43),23932.58 Yao M, Zhao X, Jin L, et al. Chemical Engineering Journal,2017,322,582.59 Dong X C, Xu H, Wang X W, et al. ACS Nano,2012,6(4),3206.60 Lin M C, Gong M, Lu B, et al. Science Foundation in China,2015,520(4),325.61 Wang Y, Chen J, Cao J, et al. Journal of Power Sources,2014,271,269.62 Lu Z, Foroughi J, Wang C, et al. Advanced Energy Materials,2017,8(8),1702047.63 Mo M, Chen C, Gao H, et al. Electrochimica Acta,2018,269,11.64 Choi J H, Lee C, Cho S, et al. Carbon,2018,132,16.65 Li X, Tang Y, Song J, et al. Carbon,2017,129,236.66 Malik R, Zhang L, Mcconnell C, et al. Carbon,2017,116,579.67 Ma X, Liu J, Liang C, et al. Journal of Materials Chemistry A,2014,2(32),12692.
[1] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[2] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[3] 王永亮, 王春锋, 马荣鑫, 韩志东. 低缺陷密度石墨烯与Co3O4复合材料的制备及电化学性能[J]. 材料导报, 2019, 33(18): 3156-3160.
[4] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[5] 林琳, 陈景民, 王会, 李久盛, 陈晋阳, 曾祥琼. 皮肤敷料的研究进展[J]. 材料导报, 2019, 33(1): 65-72.
[6] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[7] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[8] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[9] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[10] 张玮倩, 许秀玲, 周国伟. 二元及三元过渡金属氧化物的制备及其电化学应用研究进展[J]. 材料导报, 2018, 32(21): 3731-3736.
[11] 肖国庆, 勾黎敏, 丁冬海. 超级电容器用PVDC基碳电极的研究现状/肖国庆等超级电容器用PVDC基碳电极的研究现状[J]. 材料导报, 2018, 32(19): 3309-3317.
[12] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[13] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[14] 董文举, 孔令斌, 康龙, 冉奋. 超级电容器电极材料及器件的柔性化与微型化[J]. 材料导报, 2018, 32(17): 2912-2919.
[15] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed