Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2555-2564    https://doi.org/10.11896/j.issn.1005-023X.2018.15.004
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
二氧化锰基超级电容器的研究进展
黄文欣, 李军, 徐云鹤
上海工程技术大学材料工程学院,上海 201620
Research Progress on Manganese Dioxide Based Supercapacitors
HUANG Wenxin, LI Jun, XU Yunhe
School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620
下载:  全 文 ( PDF ) ( 3365KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在能源日益紧张的今天,超级电容器作为一种新型的储能装置,以其寿命长、功率高、绿色环保等特点而备受关注。其中二氧化锰基超级电容器不仅具有高功率密度、长循环寿命、快速充放电等特点,还具有价格低廉、来源广泛、环境友好的优势,在各个领域都拥有非常广阔的应用前景和经济价值。然而因受到二氧化锰材料自身导电性和比表面积的限制,二氧化锰基超级电容器的比电容与理论值相差较大;同时其结构不稳定也造成循环稳定性较低。针对上述问题,目前对于二氧化锰超级电容器的研究主要集中于寻找简单可控的电极制备方法以提高电极的导电性、比电容、循环稳定性等电化学性能,以及设法综合利用各种电极材料的优点发挥其协同效应等方面。
探究简单可控的电极制备方法是获得高质量二氧化锰基超级电容器的研究的首要任务,常见的方法有溶胶-凝胶法、水热合成法、化学沉淀法、低温固相法和电化学沉积法。溶胶-凝胶法制备的样品纯度高,但是受干燥条件的影响较大,易团聚。化学沉淀法可直接得到化学成分均一、分布均匀的粉体材料,但是对合成温度要求较高,也易发生团聚。低温固相法制备电极粉末改善了高温时产物粒子易快速生长、团聚的问题,但是存在接触不均匀、反应不充分的缺点。水热法简单、成本低,是目前制备粉末电极较为常用的方法。这些制备方法各有千秋,但是这类先制备出粉末再合成电极的方式不仅延长了工艺,而且不符合节能环保的原则,相比之下电沉积法可直接将二氧化锰沉积到基底上,操作简单且参数灵活可控。二氧化锰电极材料的改性问题一直颇受关注,目前掺杂和复合仍是改性方面较为常用的方法。例如向二氧化锰中掺杂少量的金属元素可以提高电极的导电性,而与某些导电聚合物复合则可以有效地解决二氧化锰因结构不稳定而易在电解液中溶解的问题。掺杂物质与复合材料的选择、掺杂和复合方式以及与二氧化锰材料的配比是获得高质量电极的关键。当前二氧化锰基超级电容器电极材料不仅仅只有二氧化锰这一种,而是结合了各种炭材料、复合材料或者金属及其氧化物等物质,组合形成多元复合材料以利用各组分的特点,这对优化电容器性能有很大的帮助。此外,学者们还发现电解液的选择对扩大超级电容器的电化学窗口、提高电容器能量密度和功率密度有很大的影响。
本文简单介绍了二氧化锰基超级电容器的储能机理,综述了电容器电解液与电极的制备和改性研究现状,此外还介绍了二氧化锰基超级电容器的组装方式,并对未来的研究趋势提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄文欣
李军
徐云鹤
关键词:  二氧化锰  超级电容器  电解液  制备方法  改性    
Abstract: Nowadays, the energy issue has increasingly become a hot spot of social attention, and the supercapacitor as a new type of energy storage device attracts much attention due to its long service life, high power and environmental friendliness. MnO2 based supercapacitors not only assume the characteristics of high power density, long cycle life, fast charge and discharge, but also have the advantages of low cost, broad source and environmental friendliness. Thus they have displayed a very broad application prospects and economic value in various fields. However, the specific capacitance of the MnO2 based supercapacitor is considerably lower than the theoretical value due to its poor conductivity and limited specific surface area. Moreover, its unstable structure also results in poor cycling stability. To resolve the above mentioned problems, the current researches about the MnO2 based supercapacitor mainly focus on finding facile and controllable preparation methods to improve the electrochemical properties like conductivity, specific capacitance, cycling stability, etc., and trying to magnify the advantages and realize synergistic effect of various electrode materials.
Searching a simple and controllable electrode preparation method has become a primary task for high quality MnO2 based supercapacitors. The common methods include sol-gel method, hydrothermal synthesis method, chemical precipitation method, low temperature solid phase method and electrochemical deposition method. The resultant powders prepared by sol-gel method have high purity, agglomerate easily due to the drying conditions. Through the chemical precipitation method can obtain uniformly distributed powders with even chemical compositions, and still, ease of agglomerat owing to high synthesis temperature. The low temperature solid phase method can efficiently overcome the shortcomings mentioned above involving the rapid growth and agglomeration of particles at high temperature, but nevertheless suffers low reaction conversion rate which is attributed to the inadequate contact among the reactants. The hydrothermal synthesis is a simple and low cost method which has been applied to prepare the powder widely at pre-sent. The powders prepared by the above methods need certain pre-treatment for the fabrication of electrode, which extends the process and is detrimental to energy saving and environmental protection. On the contrary, the electrodeposition method can directly deposit manganese dioxide on different substrates with flexible operation and controllable operating parameters. The modification of manganese dioxide electrode material has converged intensive research endeavors, the doping and composing methods are still used commonly at present, for example, a small amount of metal elements doped in manganese dioxide can improve the conductivity of the electrode, and some conductive polymers added into manganese dioxide can effectively solve the unstable structure of manganese dioxide which results in its easy dissolution in the electrolyte. In order to obtain the high-quality electrode, it is very essential to select the species of the doped materials and composited materials, their proportions, and the doping and composing methods. Now, the MnO2 based supercapacitor is not barely composed of MnO2, but a combination of MnO2 and other substances, such as a variety of carbon materials, composite materials or metal oxides. The combination of multiple composite materials can adequately make use of the characteristics of each component, which contributes to optimizing the performance of the capacitor. In addition, some scholars also found that the selection of electrolyte has great influence on expanding the electrochemical window of supercapacitors, improving the energy density and power density of capacitors.
This paper briefly introduces the energy storage mechanism and summarizes the research status of capacitor electrolyte, electrode preparation and modification method. The fabrication and performance characteristics of MnO2 based supercapacitors device are introduced, and the future research trends are also presented.
Key words:  manganese dioxide    supercapacitor    electrolyte    preparation method    modification
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  TM53  
基金资助: 国家自然科学基金(51471105);上海市教育发展基金会和上海市教育委员会“曙光计划”(12SG44)
通讯作者:  李军:通信作者,男,1977年生,教授,硕士研究生导师,主要从事电化学及材料表面改性的研究 E-mail:jacob_lijun@sues.edu.cn   
作者简介:  黄文欣:女,1993年生,硕士,主要从事电化学方面的研究 E-mail:593599235@qq.com
引用本文:    
黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors. Materials Reports, 2018, 32(15): 2555-2564.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.004  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2555
1 Liu Fuhai, Kang Chunping, Li Zhongqiao, et al. Research progress of MnO2 as electrode materials used in supercapacitors[J].Journal of Dongguan University of Technology,2016(1):42(in Chinese).
刘福海,康春萍,李中桥,等.二氧化锰作为超级电容器电极材料的研究进展[J].东莞理工学院学报,2016(1):42.
2 He Xiaojun, Li Xiaojing, Wang Xiaoting, et al. Efficient preparation of porous carbons from coal tar pitch for high performance super capacitors[J].New Carbon Materials,2014,29(6):493.
3 Li Liang, Tan Li, Li Gengnan, et al. Insight into synergy within multi-decorated graphene 3 D networks for high performance supercapacitor[J].Journal of Solid State Chemistry,2017,251:266.
4 Güven zdemir Z, Yilmaz Canli N, Senkal B F, et al. Super-capacitive behavior of carbon nano tube doped 11-(4-cyanobiphenyl-4-oxy) undecan-1-ol[J].Journal of Molecular Liquids,2015,211:442.
5 Sun Hang, She Ping, Xu Kongliang, et al. A self-standing nanocomposite foam of polyaniline@reduced grapheme oxide for flexible super-capacitors[J].Synthetic Metals,2015,209:68.
6 Bahloul A, Nessark B, Briot E, et al. Polypyrrole-covered MnO2 as electrode material for supercapacitor[J].Journal of Power Sources, 2013,240:267.
7 Fang Wei, Chen Xiaohong, Song Huaihe, et al. Study of bamboo-based carbon/polyaniline composite used as supercapacitor electrode material[J].Carbon Techniques,2015,34(3):15(in Chinese).
方偎,陈晓红,宋怀河,等.竹炭/聚苯胺复合材料作为超级电容器电极材料的研究[J].炭素技术,2015,34(3):15.
8 Wang Pengfei, Liu Hui, Xu Yuxing, et al. Supported ultrafine ruthenium oxides with specific capacitance up to 1 099 F·g-1 for a supercapacitor[J].Electrochimica Acta,2016,194:211.
9 Yang Min Ho, Hong Seok Bok, Choi Bong Gill. Hierarchical MnO2 nanosheet arrays on carbon fiber for high-performance pseudocapacitors[J].Journal of Electroanalytical Chemistry,2015,759:95.
10 Yu Wei, Li Benqiang, Ding Shujiang. Electroless fabrication and supercapacitor performance of CNT@NiO-nanosheet composite nanotubes[J].Nanotechnology,2016,27(7):1.
11 Conway B E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage[J].Journal of The Electrochemical Society,1991,138(6):1539.
12 Liu K C, Aanderson M A. Porous nickel oxide/nickel films for electrochemical capacitors[J].Journal of The Electrochemical Society,1996,143:124.
13 Lin C, Ritter J A, Popov B N. Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors[J].Joural of The Electrochemical Society,1998,145:4097.
14 Srinivasan V, Weidner J W. An electrochemical route for making porous nickel oxide electrochemical capacitors[J].Journal of The Electrochemical Society,1997,144:L210.
15 Lee H Y, Coodenough J B. Supercapacitor behavior with KCl electrolyte[J].Journal of Solid State Chemistry,1999,144:220.
16 Arnott J B, Donne S W. Examining manganese dioxide-graphite connectivity in alkaline electrolytes[J].Journal of The Electrochemical Society,2007,154:A776.
17 Zhang Milin, Yang Chen, Chen Ye, et al. Studies on electrolyte performance of nano-MnO2 supercapacitors[J].Chinese Journal of Po-wer Sources,2004,28(10):626(in Chinese).
张密林,杨晨,陈野,等.纳米MnO2超级电容器电解液性能研究[J].电源技术,2004,28(10):626.
18 Jaidev, Jafri R I, Mishra A K, et al. Polyaniline-MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte[J].Journal of Materials Chemistry,2011,21:17601.
19 Zhu Qiancheng, Liu Kuan, Zhou Jianqing, et al. Design of a unique 3D-nanostructure to make MnO2 work assupercapacitor material in acid environment[J].Chemical Engineering Journal,2017,321:554.
20 Izan Izwan Misnon, Radhiyah Abd Aziz, Nurul Khairiyyah Mohd Zain, et al. High performance MnO2 nanoflower electrode and the relationship between solvated ion size and specific capacitance in highly conductive electrolytes[J].Materials Research Bulletin,2014,57:221.
21 Nguyen Van Hoa, Charmaine Lamiel, Nguyen Huu Nghia, et al. Different morphologies of MnO2 grown on the graphene@nickel foam electrode for supercapacitor application[J].Materials Letters,2017,208:102.
22 Do Geum Lee, Cheol Min Yang, Bo-Hye Kim. Enhanced electrochemical properties of boron functional groups on porous carbon nanofiber/MnO2 materials[J].Journal of Electroanalytical Chemistry,2017,788:192.
23 Lina Khandare, Santosh Terdale. Gold nanoparticles decorated MnO2 nanowires for high perfor-mance supercapacitor[J].Applied Surface Science,2017,418:22.
24 Xu Jing, Li Jiaqiang, Yang Qiaoling, et al. In-situ synthesis of MnO2@graphdiyne oxides nanocomposite with enhanced perfor-mance of supercapacitors[J].Electrochimica Acta,2017,251:672.
25 Luo Xin, Yang Jiaoyan, Yan Dan, et al. MnO2-decorated 3D porous carbon skeleton derived from mollusk shell for high-performance supercapacitor[J].Journal of Alloys and Compounds,2017,723:505.
26 Aghazadeh M, Asadi M, Maragheh M G, et al. Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics[J].Applied Surface Science,2016,364:141.
27 Zhou He, Zou Xiaopeng, Zhang Yanrong. Fabrication of TiO2@MnO2 nanotube arrays by pulsed electrodeposition and their application for high-performance supercapacitors[J].Electrochimica Acta,2016,192:259.
28 Kalubarme R S, Jadhav H S, Park C J. Electrochemical characteristics of two-dimensional nano-structured MnO2 for symmetric supercapacitor[J].Electrochimica Acta,2013,87:457.
29 Kyung Wan Nam, Chang Wook Lee, Xiao Qing Yang, et al. Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes[J].Journal of Power Sources,2009,188:323.
30 Zhang Yafei, Zhang Chuanxiang, Huang Guangxu, et al. Synthesis and capacitive properties of manganese oxide nanoparticles dispersed on hierarchical porous carbons[J].Electrochimica Acta,2015,166:107.
31 Li Y S, Sun I W, Chang J K, et al. Doped butylmethylpyrrolidi-nium-dicyanamide ionic liquid as an electrolyte for MnO2 supercapa-citors[J].Journal of Materials Chemistry.2012,22:6274.
32 Zhao Dandan, Zhao Yongqing, Zhang Xuan, et al. Application of high-performance MnO2 nanocomposite electrodes in ionic liquid hybrid supercapacitors[J].Materials Letters,2013,107:115.
33 Serkan Akbulut, Mesut Yilmaz, Supil Raina, et al. Solid-state supercapacitor cell based on 3D nanostructured MnO2/CNT microelectrode array on graphite and H3PO4/PVA electrolyte[J].Diamond & Related Materials,2017,74:222.
34 Kazushi Shimamoto, Kiyoharu Tadanaga, Masahiro Tatsumisago. All-solid-state electrochemical capacitors using MnO2/carbon nanotube composite electrode[J].Electrochimica Acta,2013,109:651.
35 Nilesh R Chodankar, Deepak P Dubal, Girish S Gund, et al. A symmetric MnO2/MnO2 flexible solid state supercapacitor operating at 1.6 V with aqueous gel electrolyte[J].Journal of Energy Chemistry,2016,25:463.
36 Long Xiao, Zeng Zhigang, Guo Erjuan, et al. Facile fabrication of all-solid-state flexible interdigitated MnO2 supercapacitor via in-situ catalytic solution route[J].Journal of Power Sources,2016,325:264.
37 Mei Xia Guo, Shao Wei Bian, Fu Shao, et al. Hydrothermal synthesis and electrochemical performance of MnO2/graphene/polyester composite electrode materials for flexible supercapacitors[J].Electrochimica Acta,2016,209:486.
38 Zhu Junjie, Yu Lili, Jin Taozhao. 3D network mesoporous beta-manganese dioxide: Template-free synthesis and supercapacitive perfor-mance[J].Journal of Power Sources,2014,270:411.
39 Wang Fuhua, Mao Zhiyou, Yao Qiushi, et al. Synthesis and supercapacitor performance of activated carbon/MnO2 composites[J].Applied Chemical Industry,2015,44(5):785.
王福华,茆志友,姚秋实,等.活性炭/二氧化锰纳米复合材料的合成及超级电容性能[J].应用化工,2015,44(5):785.
40 Adelkhania H, Ghaemi M. Characterization of manganese dioxide electrodeposited by pulse and direct current for electrochemical capacitor[J].Journal of Alloys and Compounds,2010,493:175.
41 Ashassi-Sorkhabi H, Asghari E, La’le Badakhshan P. Potentiostatic and cyclic voltammetric deposition of nanostructured manganese oxide for supercapacitor applications[J].Current Applied Physics,2014,14:187.
42 Dubala D P, Dhawalea D S, Gujarb T P, et al. Effect of different modes of electrodeposition on supercapacitive properties of MnO2 thin films[J].Applied Surface Science,2011,257:3378.
43 Yang Jie, Lian Lifang, Ruan Hongcheng, et al. Nanostructured po-rous MnO2 on Ni foam substrate with a high massloading via a CV electrodeposition route for supercapacitor application[J].Electrochimica Acta,2014,136:189.
44 Sun Yaru, Zhang Weiwei, Li Haiquan, et al. Preparation of graphite-MnO2 composite electrode by cyclic voltammetry and its characteristics analysis[J].Materials Protection,2016,6(7):20(in Chinese).
孙雅茹,张微微,李海全,等.循环伏安法制备石墨-MnO2复合电极及其特性分析[J].材料保护,2016,6(7):20.
45 Huang Wenxin, Li Jun, Xu Yunhe. Nucleation/growth mechanisms and morphological evolution of porous MnO2 coating deposited on graphite for supercapacitor[J].Materials,2017,10(10):1205.
46 Wang Guiling, Wang Wei, Zhao Yufeng, et al. Pulsed electrodeposition of mesoporous cobalt-doped manganese dioxide as supercapacitor electrode material[J].Ionics,2014,20(2):243.
47 Dubal D P, Lokhande C D. Significant improvement in the electrochemicall performancesof nano-nest like amorphous MnO2 electrodes due to Fe doping[J].Ceramics International,2013,39:415.
48 Hua Zhimi, Xiao Xu, Chen Chi, et al. Al-doped α-MnO2 for highmass-loading pseudocapacitor with excellent cycling stability[J].Nano Energy,2015,11:226.
49 Zhang Yong, Yao Qianqian, Gao Haili, et al. Facile synthesis and electrochemical performance of manganese dioxide doped by activated carbon, carbon nanofiber and carbon nanotube[J].Powder Technology,2014,262:150.
50 Liu Tingting, Shao Guangjie, Ji Mingtong, et al. Synthesis of MnO2-graphene composites with enhanced supercapacitive perfor-mance via pulse electrodeposition under supergravity field[J].Journal of Solid State Chemistry,2015,2014:160.
51 Xu Defang, Song Yan, Tian Xiaodong, et al. Preparation and electrochemical properties of nanostructured MnO2/exfoliated graphite composites[J].New Carbon Materials,2016,31(6):615(in Chinese).
徐德芳,宋燕,田晓冬,等.纳米MnO2/膨胀石墨复合材料的制备及其电化学性能[J].新型炭材料,2016,31(6):615.
52 Wang Jiangan, Yang Ying, Huang Zhenghong, et al. MnO2/polypyrrole nanotubular composites: Reactive templatesynthesis, cha-racterization and application as superior electrodematerials for high-performance supercapacitors[J].Electrochimica Acta,2014,130:642.
53 Liu Qin, Cheng Cunxi, Wu Pingping. Preparation of PANI/MnO2 and its application in supercapacitors[J].Guangzhou Chemical Industry,2017,45(16):69(in Chinese).
刘琴,程存喜,吴平平.PANI/MnO2电极的制备及其在超级电容器中的应用[J].广州化工,2017,45(16):69.
54 Zhou Haiyan, Yan Zhe, Yang Xing, et al. RGO/MnO2/polypyrrole ternary film electrode for supercapacitor[J].Materials Chemistry and Physics,2016,177:40.
55 Zhang Lei, Li Tiehu, Ji Xianglin, et al. Freestanding three-dimensional reduced graphene oxide/MnO2 on porous carbon/nickel foam as a designed hierarchical multihole supercapacitor electrode[J].Electrochimica Acta,2017,252:306.
56 Wang Yuqiao, Wang Shasha, Wu Yijun, et al. Polyhedron-core/double-shell CuO@C@MnO2 decorated nickel foam for high performance all-solid-state supercapacitors[J].Electrochimica Acta,2017,246:1065.
57 Lang X, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J].Nature Nanotech-nology,2011,6:232.
58 Liu J, Jiang J, Bosman M, et al. Three-dimensional tubular arrays of MnO2-NiO nanoflakes with high areal pseudocapacitance[J].Journal of Materials Chemistry,2012,22:2419.
59 Sarkar D, Khan G G, Singh A K, et al. High-performance pseudocapacitor electrodes based on a-Fe2O3/MnO2 core-shell nanowire he-terostructure arrays[J].Journal of Physical Chemistry C,2013,117:15523.
60 Su Z, Yang C, Xu C, et al. Co-electro-deposition of the MnO2-PEDOT∶PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices[J].Journal of Materials Chemistry A,2013,1:12432.
61 Ye K H, Liu Z Q, Xu C W, et al. MnO2/reduced graphene oxide composite as high-performance electrode for flexible supercapacitors[J].Inorganic Chemistry Communications,2013,30:1.
62 Li P, Yang Y, Shi E, et al. Core-double-shell, CNT@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode[J].ACS Applied Materials & Interfaces,2014,6:5228.
63 Kim M, Hwang Y, Kim J. Fabrication of graphene-carbon nanotube papers decorated with manganese oxide nanoneedles on the graphene sheets for supercapacitors[J].Physical Chemistry Chemical Physics,2014,16:351.
64 Wu Wen. Study of metal oxide supercapacitors[D].Shanghai: Fudan University,2010(in Chinese).
吴雯.金属氧化物超级电容器的研究[D].上海:复旦大学,2010.
65 Cui Lihua, Wang Yan, Shu Xia, et al. Preparation and supercapacitive performance of MnO2/TiO2 composite electrodes[J].Acta Materiae Compositae Sinica,2016,33(8):1794(in Chinese).
崔丽华,王岩,舒霞,等.MnO2/TiO2复合物电极的制备及超级电容性能[J].复合材料学报,2016,33(8):1794.
66 Sumboja A, Foo C Y, Wang X, et al. Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device[J].Advanced Materials,2013,25:2809.
67 Du Shuangshuang, He Ying, Xu Chenhui, et al. Controllable synthesis of MnO2-PANI composite on carbon cloth and its asymmetric supercapacitor[J].Journal of Functional Polymers,2015(4):353(in Chinese).
杜双双,何颖,徐晨辉,等.碳布负载的MnO2-PANI复合材料的控制合成及其不对称超级电容器[J].功能高分子学报,2015(4):353.
[1] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[2] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[3] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[4] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[5] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[6] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[7] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[8] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[9] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[10] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[11] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[12] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[13] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[14] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[15] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed