Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 2912-2919    https://doi.org/10.11896/j.issn.1005-023X.2018.17.003
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
超级电容器电极材料及器件的柔性化与微型化
董文举1, 孔令斌1,2, 康龙1,2, 冉奋1,2
1 兰州理工大学材料科学与工程学院,兰州 730050;
2 兰州理工大学省部共建有色金属先进加工与可再生利用国家重点实验室,兰州 730050
Flexibility and Microminiaturization of Electrode Materials and Devices for Supercapacitor
DONG Wenju1, KONG Lingbin1,2, KANG Long1,2, RAN Fen1,2
1 Materials Science and Engineering College, Lanzhou University of Technology, Lanzhou 730050;
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 1877KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着可穿戴式电子设备的快速发展,各类柔性储能器件也相继出现。柔性超级电容器因其稳定性高、体积小、电化学性能优越等特点受到研究人员的广泛关注。开发一种工艺简单、电化学性能和柔性良好的电极材料对制备性能优越的柔性超级电容器具有重要意义。材料的选取、电极的制备及器件的微型化将是未来的主要研究方向。本文主要综述了柔性超级电容器电极材料的分类、具体的制备方法以及器件的主要构型,并探讨了柔性超级电容器电极材料及器件的主要发展方向和研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董文举
孔令斌
康龙
冉奋
关键词:  超级电容器  柔性电极  柔性器件  器件微型化    
Abstract: With the rapid development of wearable electronic devices, various kinds of flexible energy storage devices have emerged. Flexible supercapacitor has aroused extensive interests of researchers thanks to its high stability, small size and excellent electrochemical performance. It is of great significance to develop an electrode with simple process, favorable electrochemical performance and satisfactory flexibility for the preparation of flexible supercapacitors with superior performance. Material selection, electrode preparation and device miniaturization will be the main research direction in the future. This article mainly reviews the classification of electrode materials, the specific preparation methods and the primary configuration of the devices, and discusses the main development direction and research focus of electrode materials and devices for flexible supercapacitors.
Key words:  supercapacitor    flexible electrode    flexible device    device miniaturization
               出版日期:  2018-09-10      发布日期:  2018-09-19
ZTFLH:  TB324  
  TQ316.3  
基金资助: 国家自然科学基金(51203071;51363014;51463012;51763014);中国博士后科学基金(2014M552509;2015T81064);甘肃省自然科学基金(1506RJZA098);兰州理工大学红柳杰出青年计划(J201402);沈阳材料科学国家重点实验室与有色金属先进加工与再利用国家重点实验室联合资助(18LHPY002)
通讯作者:  冉奋: 博士,副教授,博士研究生导师,主要从事新型能源材料和生物医用高分子材料的研究 E-mail:ranfen@163.com   
作者简介:  董文举:男,1992年生,硕士研究生,主要从事柔性超级电容器研究
引用本文:    
董文举, 孔令斌, 康龙, 冉奋. 超级电容器电极材料及器件的柔性化与微型化[J]. 材料导报, 2018, 32(17): 2912-2919.
DONG Wenju, KONG Lingbin, KANG Long, RAN Fen. Flexibility and Microminiaturization of Electrode Materials and Devices for Supercapacitor. Materials Reports, 2018, 32(17): 2912-2919.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.003  或          http://www.mater-rep.com/CN/Y2018/V32/I17/2912
1 Wang X, Lu X, Liu B, et al. Flexible energy-storage devices: Design consideration and recent progress[J].Advanced Materials,2014,26(28):4763.
2 Choudhary N, Li C, Moore J, et al. Asymmetric supercapacitor electrodes and devices[J].Advanced Materials,2017,29(21):1605336.
3 Zuo W, Li R, Zhou C, et al. Battery-supercapacitor hybrid devices: Recent progress and future prospects[J].Advanced Science,2017,4(7):1600539.
4 Yu Z, Tetard L, Zhai L, et al. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions[J].Energy & Environmental Science,2015,8(3):702.
5 Liu W, Song M S, Kong B, et al. Flexible and stretchable energy storage: Recent advances and future perspectives[J].Advanced Materials,2017,29(1):1603436.
6 Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J].Advanced Energy Materials,2014,4(4):1300816.
7 Makino S, Yamauchi Y, Sugimoto W. Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors[J].Journal of Power Sources,2013,227(227):153.
8 Wang F, Li G, Zhou Q, et al. One-step hydrothermal synthesis of sandwich-type NiCo2S4@reduced graphene oxide composite as active electrode material for supercapacitors[J].Applied Surface Science,2017,425:180.
9 Tan Y, Zhang Y, Kong L, et al. Nano-Au@PANI core-shell nano-particles via in-situ polymerization as electrode for supercapacitor[J].Journal of Alloys and Compounds,2017,722:1.
10 Chen T, Elabd Y A. Hybrid-capacitors with polyaniline/carbon electrodes fabricated via simultaneous electrospinning/electrospraying[J].Electrochimica Acta,2017,229:65.
11 Liu C, Tan Y, Liu Y, et al. Microporous carbon nanofibers prepared by combining electrospinning and phase separation methods for supercapacitor[J].Journal of Energy Chemistry,2016,25(4):587.
12 Lu X, Yu M, Wang G, et al. Flexible solid-state supercapacitors: Design, fabrication and applications[J].Energy & Environmental Science,2014,7(7):2160.
13 Chen X L, Paul R, Dai L M. Carbon-based supercapacitors for efficient energy storage[J].National Science Review,2017,4(3):453.
14 Xiao X, Peng X, Jin H, et al. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors[J].Advanced Materials,2013,25(36):5091.
15 Niu Z, Luan P, Shao Q, et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polya-niline films for high performance supercapacitor electrodes[J].Energy & Environmental Science,2012,5(9):8726.
16 Benson J, Kovalenko I, Boukhalfa S, et al. Multifunctional CNT-polymer composites for ultra-tough structural supercapacitors and desalination devices[J].Advanced Materials,2013,25(45):6625.
17 Li Z, Huang T, Gao W, et al. Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors[J].ACS Nano,2017,11(11):11056.
18 Hu N, Zhang L, Yang C, et al. Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: An excellent structure for high-performance flexible solid-state supercapa-citors[J].Scientific Reports,2016,6:19777.
19 Yang Y, Huang Q, Niu L, et al. Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics[J].Advanced Materials,2017,29(19):1606679.
20 Zhu J, Tang S, Wu J, et al. Wearable high-performance supercapa-citors based on silver-sputtered textiles with FeCo2S4-NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes[J].Advanced Energy Materials,2017,7(2):1601234.
21 Jin C, Jin L N, Guo M X, et al. MnO2 nanotubes assembled on conductive graphene/polyester composite fabric as a three-dimensional porous textile electrode for flexible electrochemical capacitors[J].Journal of Colloid and Interface Science,2017,508:426.
22 Yuan L, Yao B, Hu B, et al. Polypyrrole-coated paper for flexible solid-state energy storage[J].Energy & Environmental Science,2013,6(2):470.
23 Chen Y, Cai K, Liu C, et al. High-performance and breathable polypyrrole coated air-laid paper for flexible all-solid-state supercapacitors[J].Advanced Energy Materials,2017,7(21):1701247.
24 Xia X H, Tu J P, Zhang Y Q, et al. Three-dimentional porous nano-Ni/Co(OH)2 nanoflake composite film: A pseudocapacitive material with superior performance[J].The Journal of Physical Chemistry C,2011,115(45):22662.
25 Huang Y, Li Y, Hu Z, et al. A carbon modified MnO2 nanosheet array as a stable high-capacitance supercapacitor electrode[J].Journal of Materials Chemistry A,2013,1(34):9809.
26 Fu Y, Cai X, Wu H, et al. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage[J].Advanced Materials,2012,24(42):5713.
27 Li Y, Sheng K, Yuan W, et al. A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide[J].Chemical Communications,2013,49(3):291.
28 Liu G, Zhang Y, Ci S, et al. Research progress on flexible electrochemical energy storage devices[J].Energy Storage Science & Technology,2017,6(1):52(in Chinese).
刘冠伟,张亦弛,慈松,等.柔性电化学储能器件研究进展[J].储能科学与技术,2017,6(1):52.
29 Huang Wei, Fu Zhibing, Zhu Jiayi, et al. Research development in preparation of graphene/carbon nanotube hybrid films[J].Materials Review,2016,30(z1):24(in Chinese).
黄维,付志兵,朱家艺,等.石墨烯/碳纳米管复合薄膜的制备研究进展[J].材料导报,2016,30(专辑27):24.
30 Niu Z, Dong H, Zhu B, et al. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with conti-nuous reticulate architecture[J].Advanced Materials,2013,25(7):1058.
31 Zang X, Chen Q, Li P, et al. Highly flexible and adaptable, all-solid-state supercapacitors based on graphene woven-fabric film electrodes[J].Small,2014,10(13):2583.
32 Chen L, Liu C, Zhang Z. Novel [111] oriented γ-Mo2N thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors[J].Electrochimica Acta,2017,245:237.
33 Chen X, Lin H, Deng J, et al. Electrochromic fiber-shaped supercapacitors[J].Advanced Materials,2014,26(48):8126.
34 Li Xiang, Gan Weiping, Ma Heran. RuO2·xH2O electrode mate-rials prepared by rotation coating method and investigation on its properties[J].Journal of Functional Materials,2011,42(2):339(in Chinese).
李祥,甘卫平,马贺然.旋转涂覆法制备氧化钌电极材料及其性能研究[J].功能材料,2011,42(2):339.
35 Sundriyal P, Bhattacharya S. Inkjet-printed electrodes on A4 paper substrates for low-cost, disposable, and flexible asymmetric supercapacitors[J].ACS Applied Materials & Interfaces,2017,9(44):38507.
36 Xu Y, Schwab M G, Strudwick A J, et al. Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks[J].Advanced Energy Materials,2013,3(8):1035.
37 Li J, Shao Y, Shi Q, et al. Calligraphy-inspired brush written fol-dable supercapacitors[J].Nano Energy,2017,38:428.
38 Jeong H T, Kim B C, Higgins M J, et al. Highly stretchable reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes for energy storage devices[J].Electrochimica Acta,2015,163:149.
39 Jin Yu, Yao Hui, Chen Minghai, et al. Electrospinning application in supercapacitors[J].Materials Review A: Review Papers,2011,25(8):21(in Chinese).
靳瑜,姚辉,陈名海,等.静电纺丝技术在超级电容器中的应用[J].材料导报:综述篇,2011,25(8):21.
40 Iqbal N, Wang X, Babar A A, et al. Polyaniline enriched flexible carbon nanofibers with core-shell structure for high-performance wearable supercapacitors[J].Advanced Materials Interfaces,2017,4(24):1700855.
41 Simotwo S K, DelRe C, Kalra V. Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline-carbon nanotube nanofibers[J].ACS Applied Materials & Interfaces,2016,8(33):21261.
42 Ko Y, Kim D, Kim U J, et al. Vacuum-assisted bilayer PEDOT:PSS/cellulose nanofiber composite film for self-standing, flexible, conductive electrodes[J].Carbohydrate Polymers,2017,173:383.
43 Wu P, Cheng S, Yang L, et al. Synthesis and characterization of self-standing and highly flexible delta-MnO2@CNTs/CNTs compo-site films for direct use of supercapacitor electrodes[J].ACS Applied Materials & Interfaces,2016,8(36):23721.
44 Su Xiaohui, Yu Lin, Cheng Gao, et al. Hydrothermally synthesized manganese dioxide film as supercapacitor electrode[J].Materials Review B: Research Papers,2015,29(5):18(in Chinese).
苏小辉,余林,程高,等.热合成法制备超级电容器用二氧化锰薄膜电极[J]. 材料导报:研究篇,2015,29(5):18.
45 Wang Q, Wang X, Liu B, et al. NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors[J].Journal of Materials Chemistry A,2013,1(7):2468.
46 Ghosh D, Mandal M, Das C K. Solid state flexible asymmetric supercapacitor based on carbon fiber supported hierarchical Co(OH)xCO3 and Ni(OH)2[J].Langmuir,2015,31(28):7835.
47 Jia Y, Liu Z, Liao Z, et al. Progress in preparation and performance of conducting polyaniline[J].Development & Application of Mate-rials,2016,31(1):97(in Chinese).
贾艺凡,刘朝辉,廖梓珺,等.导电聚苯胺的聚合方法及应用研究进展[J].材料开发与应用,2016,31(1):97.
48 Wang K, Meng Q, Zhang Y, et al. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays[J].Advanced Materials,2013,25(10):1494.
49 Yu H, Ge X, Bulin C, et al. Facile fabrication and energy storage analysis of graphene/PANI paper electrodes for supercapacitor application[J].Electrochimica Acta,2017,253:239.
50 Wang K, Zhang X, Li C, et al. Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance[J].Advanced Materials,2015,27(45):7451.
51 Fan H, Ran F, Zhang X, et al. Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid-liquid phase separation and pyrolysis process[J].Electrochimica Acta,2014,138(25):367.
52 Zhao X, Wang N, Tan Y, et al. High rate capability and long cycle-life of nickel oxide membrane electrode incorporated with nickel and coated with carbon layer via in-situ supporting of engineering plastic for energy storage application[J].Journal of Alloys and Compounds,2017,710:72.
53 Murashko K, Nevstrueva D, Pihlajamäki A, et al. Cellulose and activated carbon based flexible electrical double-layer capacitor electrode: Preparation and characterization[J].Energy,2017,119:435.
54 Zhao X, Ran F, Shen K, et al. Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone[J].Journal of Power Sources,2016,329:104.
55 Ran F, Shen K, Tan Y, et al. Activated hierarchical porous carbon as electrode membrane accommodated with triblock copolymer for supercapacitors[J].Journal of Membrane Science,2016,514:366.
56 Wang Z, Tan Y, Liu Y, et al. New amphiphilic block copolymer-modified electrodes for supercapacitors[J].New Journal of Chemistry,2018,42(2):1290.
57 Han Y, Ge Y, Chao Y, et al. Recent progress in 2D materials for flexible supercapacitors[J].Journal of Energy Chemistry,2018,27(1):57.
58 Ye Xingke, Zhou Qianlong, Wan Zhongquan, et al. Research progress of electrode materials and devices in flexible supercapacitors[J].Chemistry,2017,80(1):10(in Chinese).
叶星柯,周乾隆,万中全,等.柔性超级电容器电极材料与器件研究进展[J].化学通报,2017,80(1):10.
59 Yang Z, Deng J, Chen X, et al. A highly stretchable, fiber-shaped supercapacitor[J].Angewandte Chemie International Edition,2013,52(50):13453.
60 Cai Z, Li L, Ren J, et al. Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes[J].Journal of Materials Chemistry A,2013,1(2):258.
61 Yu X, Pan J, Zhang J, et al. A coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformation[J].Journal of Materials Chemistry A,2017,5(13):6032.
62 Kyeremateng N A, Brousse T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics[J].Nature Nanotechnology,2017,12(1):7.
63 Zhao X, Yang Y, Wu J, et al. An electrolyte-affinity hybrid membrane with the supporting of polymer and modification of amphiphilic block copolymer for superhigh-flexible and high-performance supercapacitor[J].Sustainable Energy Fuels,2017,1(5):1074.
64 Shen C, Wang X, Zhang W, et al. A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials[J].Journal of Power Sources,2011,196(23):10465.
65 Peng L, Peng X, Liu B, et al. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors[J].Nano Letters,2013,13(5):2151.
66 Chen J, Jia C, Wan Z. The preparation and electrochemical properties of MnO2/poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes hybrid nanocomposite and its application in a novel flexible micro-supercapacitor[J].Electrochimica Acta,2014,121(3):49.
[1] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[2] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[3] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[4] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[5] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[6] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[7] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[8] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[9] 肖国庆, 勾黎敏, 丁冬海. 超级电容器用PVDC基碳电极的研究现状/肖国庆等超级电容器用PVDC基碳电极的研究现状[J]. 材料导报, 2018, 32(19): 3309-3317.
[10] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[11] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[12] 谭永涛, 孔令斌, 康龙, 冉奋. Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 《材料导报》期刊社, 2018, 32(1): 47-50.
[13] 唐捷, 华青松, 元金石, 张健敏, 赵玉玲. 超级电容器中的二维材料[J]. CLDB, 2017, 31(9): 26-35.
[14] 傅深娜, 马利, 甘孟瑜, 汪仕勇. 三维石墨烯及其复合材料的制备及在超级电容器中的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 9-15.
[15] 张鸿宇,李治应,曾蓉,. 高效温和制备纳米片状β-Co(OH)2用于超级电容器电极[J]. 材料导报编辑部, 2017, 31(22): 15-20.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed