Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3318-3324    https://doi.org/10.11896/j.issn.1005-023X.2018.19.005
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
梯级孔生物质活性炭的制备及其电容特性研究
史长亮1,2,邢宝林1,2,曾会会1,2,张双杰3,郭晖1,2,贾建波1,2,张传祥1,2,
田野1,朱阿辉1,张青山1
1 河南理工大学化学化工学院,河南省煤炭绿色转化重点实验室,焦作 454000;
2 河南理工大学煤炭安全生产 河南省协同创新中心,焦作 454000;
3 焦作多氟多有限公司,焦作 454191
Preparation of Hierarchical Pore Biomass Activated Carbons and Their Capacitance Characteristics
SHI Changliang1,2, XING Baolin1,2, ZENG Huihui1,2, ZHANG Shuangjie3, GUO Hui1,2,
JIA Jianbo1,2, ZHANG Chuanxiang1,2, TIAN Ye1, ZHU Ahui1, ZHANG Qingshan1
1 Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000;
2 Collaborative Innovation Center of Coal Work Safety, Henan Polytechnic University, Jiaozuo 454000;
3 Do-Fluoride Chemicals Co., Ltd., Jiaozuo 454191
下载:  全 文 ( PDF ) ( 2109KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以柚子皮为原料,采用预先炭化-KOH活化工艺制备生物质活性炭,并将其用作超级电容器电极材料。采用低温氮气吸附、扫描电镜(SEM)、透射电镜(TEM)及X射线光电子能谱(XPS)等方法表征生物质活性炭的孔结构、表面形貌等微观结构和表面化学性质,利用恒流充放电、循环伏安、漏电流等手段探究生物质活性炭用作电极材料的电化学特性。研究表明:柚子皮经预先炭化-KOH活化处理可以制备出比表面积为1 347~2 269 m2/g,总孔容达0.642~1.283 cm3/g,中孔比例为23.83%~48.90%的高品质生物质活性炭。该生物质活性炭具有发达的比表面积、“大孔-中孔-微孔”三维贯通梯级孔结构,且表面富含羰基、酚羟基及羧基等含氧官能团,是一种比较理想的超级电容器电极材料。生物质活性炭电极材料在KOH电解液中具有优异的电容特性,在50 mA/g电流密度下的比电容最高可达243 F/g,5 000 mA/g电流密度下的比电容仍可保持为175 F/g,且具有优异的循环稳定性,循环1 000次后比电容保持率高达93.34%,漏电流仅为0.006 3 mA。生物质活性炭优异的电化学特性与其发达的比表面积、“大孔-中孔-微孔”三维贯通梯级孔结构、合理的孔径分布及独特的富氧表面化学性质密切相关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史长亮
邢宝林
曾会会
张双杰
郭晖
贾建波
张传祥

田野
朱阿辉
张青山
关键词:  柚子皮  生物质活性炭  超级电容器  电极材料  电容特性    
Abstract: Biomass activated carbons used as electrode materials for supercapacitors were prepared from shaddock peel via preliminary carbonization coupled with KOH activation. The microstructures including pore structure and surface morphology and the surface chemistry property of biomass activated carbons were characterized by low temperature N2 adsorption, scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The electrochemical characteristics of biomass activated carbons applied as electrode materials were also investigated using galvanostatic charge-discharge, cyclic voltammetry and leakage current. The results show that high quality biomass activated carbons with specific surface area of 1 347—2 269 m2/g, total pore volume of 0.642-1.283 cm3/g, mesopore percentage of 23.83%-48.90% were obtained from shaddock peel through preliminary carbonization coupled with KOH activation routes. The as-prepared biomass activated carbons exhibited well-developed specific surface area with “macropore-mesopore-micropore” three dimensional interconnected hierarchical pore structure and contained some oxygen-containing functional groups such as carbonyl, phenolic hydroxyl and carboxyl on the surface of these activated carbons, which might become a promising electrode materials for supercapacitors. Biomass activated carbon electrode materials exhibited an excellent capacitance characteristics and superior cycling performance in KOH aqueous electrolyte. The maximum gravimetric specific capacitance of biomass activated carbon electrode materials was as high as 243 F/g at a current density of 50 mA/g and still remained 175 F/g even at a current density of 5 000 mA/g, the leakage current was only 0.006 3 mA and 93.34% of the initial specific capacitance was retained after 1 000 cycles. The superior electrochemical performances of biomass activated carbons were strongly depended on their well-developed specific surface area, macropore-mesopore-micropore three dimensional interconnected hierarchical pore structure, reasonable pore size distribution as well as unique oxygen-enriched surface chemistry property.
Key words:  shaddock peel    biomass activated carbons    supercapacitors    electrode materials    capacitance characteristics
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TQ424.1  
基金资助: 国家自然科学基金(51404098;U1361119;21646006);河南省科技攻关项目(152102210107);河南省教育厅科学技术重点研究项目(19A440002;14A440014);国家级大学生创新创业训练计划项目(201810460020;201710460002;201710460055)
作者简介:  史长亮:男,1984年生,博士,讲师,主要从事固体资源化利用方面的研究 E-mail:scl303@126.com;邢宝林:通信作者,男,1982年生,博士,副教授,主要从事洁净煤技术及新型炭材料方面的研究 E-mail:baolinxing@hpu.edu.cn;
引用本文:    
史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
SHI Changliang, XING Baolin, ZENG Huihui, ZHANG Shuangjie, GUO Hui, JIA Jianbo, ZHANG Chuanxiang, TIAN Ye, ZHU Ahui, ZHANG Qingshan. Preparation of Hierarchical Pore Biomass Activated Carbons and Their Capacitance Characteristics. Materials Reports, 2018, 32(19): 3318-3324.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.005  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3318
1 Li X Q, Chang L, Zhao S L, et al. Research on carbon-based electrode materials for supercapacitors[J].Acta Physico-Chimica Sinica,2017,33(1):130(in Chinese).
李雪芹,常琳,赵慎龙,等.基于碳材料的超级电容器电极材料的研究[J].物理化学学报,2017,33(1):130.
2 Xie W H, Jiang X Y, Qin T F, et al. Inner porous carbon nanofibers as binder-free electrodes for high-rate supercapacitors[J].Electrochimica Acta,2017,258:1064.
3 Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors[J].Chemical Society Reviews,2012,41(2):797.
4 Xing B L, Chen L J, Zhang C X, et al. Research progress of activated carbon electrode material for supercapacitor[J].Materials Review A: Review Papers,2010,24(8):22(in Chinese).
邢宝林,谌伦建,张传祥,等.超级电容器用活性炭电极材料的研究进展[J].材料导报:综述篇,2010,24(8):22.
5 Xing B L, Guo H, Chen L J, et al. Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors[J].Fuel Processing Technology,2015,138:734.
6 Yue X M, Wu Y J, Zhang S Q, et al. Preparation of coal-based activated carbon electrodes by two steps of physical-chemical activation[J].Journal of China University of Mining & Tecnology,2017,46(4):888(in Chinese).
岳晓明,吴雅俊,张双全,等.物理化学两步活化法制备煤基活性炭电极材料[J].中国矿业大学学报,2017,46(4):888.
7 Tian X J. Research progress on comprehensive utilization of pomelo peel[J].The Beverage Industry,2015,18(4):50(in Chinese).
田晓菊.柚子皮的综合利用研究进展[J].饮料工业,2015,18(4):50.
8 Fu H Y, Qiu X, Wang Q, et al. Adsorption performance of Fe(Ⅲ)-modified pomelo peel on wastewater containing Cr(Ⅵ)[J].Journal of Central South University (Science and Technology),2017,48(9):2271(in Chinese).
付宏渊,邱祥,王琼,等.铁盐改性柚子皮对含铬废水的吸附性能[J].中南大学学报(自然科学版),2017,48(9):2271.
9 Li B Z, Sun L M, Xue J H, et al. Adsorption of phenol from water on activated carbon prepared from shaddock peel by ZnCl2 and H3PO4: Equilibrium, kinetics and thermodynamics[J].Desalination and Water Treatment,2017,58:181.
10 He Q X, Chen Z L. Characterization and kinetics of biochar prepared from pomelo peel for adsorption of phenol[J].Chinese Journal of Environmental Engineering,2014,8(9):3853(in Chinese).
何秋香,陈祖亮.柚子皮制备生物炭吸附苯酚的特性和动力学[J].环境工程学报,2014,8(9):3853.
11 Zhang S J, Xing B L, Huang G X, et al. Adsorption of Cr(Ⅵ) by hydrothermal carbon from shaddock peel[J].Chinese Journal of Environmental Engineering,2017,11(5):2731(in Chinese).
张双杰,邢宝林,黄光许,等.柚子皮水热炭对六价铬的吸附[J].环境工程学报,2017,11(5):2731.
12 Liu J, Pang Y H, Shen X F. Microwave preparation of biomass activated carbon from pomelo peel and its adsorption of nitrogen dye[J].Applied Chemical Industry,2017,46(4):655(in Chinese).
刘娟,庞月红,沈晓芳.微波制备柚子皮生物质活性炭及其对偶氮染料的吸附[J].应用化工,2017,46(4):655.
13 Tong H J, Zuo W Y, Shi B F, et al. Biochar prepared by the pomelo peel and its sorption ability for manganese (Ⅱ) in water[J].Indust-rial Safety and Environmental Protection,2016,42(11):53(in Chinese).
仝海娟,左卫元,史兵方,等.柚子皮生物炭的制备及对水体中锰离子的吸附[J].工业安全与环保,2016,42(11):53.
14 Zhou X Z, Ma Q R, Zhang X W, et al. 3D-mesoporous carbon infiltrated with sulfur for high-rate stable lithium-sulfur batteries[J].Chemistry Select,2017,2(14):4131.
15 Liu J, Wang Z A, Wu X W, et al. Porous carbon derived from disposable shaddock peel as an excellent catalyst toward VO2+/VO2+ couple for vanadium redox battery[J].Journal of Power Sources,2015,299:301.
16 Huang J Y, Chen L D, Dong H W, et al. Hierarchical porous carbon with network morphology derived from natural leaf for superior aqueous symmetrical supercapacitors[J].Electrochimica Acta,2017,258:504.
17 Han J, Ge J, Ren Z J, et al. Facile green synthesis of 3D porous glucose-based carbon aerogels for high-performance supercapacitors[J].Electrochimica Acta,2017,258:951.
18 近藤精一,石川达熊,安部郁夫,等.吸附科学[M].李国希,译.北京:化学工业出版社,2010:32.
19 Guo H, Zhang J S, Zhu T X, et al. Preparation of high specific surface area activated carbon electrode materials from walnut shell[J].Materials Review B: Research Papers,2016,30(1):24(in Chinese).
郭晖,张记升,朱天星,等.利用核桃壳制备高比表面积活性炭电极材料的研究[J].材料导报:研究篇,2016,30(1):24.
20 Yin J, Zhang D, Zhao J, et al. Meso- and micro-porous composite carbons derived from humic acid for supercapacitors[J].Electrochi-mica Acta,2014,136:504.
21 Li X X, Mao L, Tong S T, et al. Preparation and electrochemical performance of HNO3-modified activated carbon electrode[J].New Chemical Materials,2015,43(3):173(in Chinese).
李肖肖,毛磊,童仕唐,等.表面氧化改性制备活性炭电极材料及其电化学性能研究[J].化工新型材料,2015,43(3):173.
22 Zhang D S, Deng C J, Xia X H, et al. Influence of pore structure on the electrochemical performance of high specific surface area bamboo char-based activated carbon[J].Chemistry and Industry of Forest Products,2010,30(5):25(in Chinese).
张东升,邓丛静,夏笑虹,等.高比表面积竹炭基活性炭的孔结构对电容性能的影响[J].林产化学与工业,2010,30(5):25.
23 Zhu Y J, Dai F, Wang J J, et al. High specific surface area carbon/carbon electrochemical capacitor in aqueous Na2SO4 electrolyte[J].New Chemical Materials,2016,44(11):143(in Chinese).
朱杨军,代芳,王姣姣,等.高比表面积活性炭基水系Na2SO4电化学电容器的制备[J].化工新型材料,2016,44(11):143.
24 Huang G X, Xu B, Chen L J, et al. Preparation of activated carbons for supercapacitors by co-activation of coal and wheat stalk[J].Journal of China Coal Society,2012,37(8):1385(in Chinese).
黄光许,徐冰,谌伦建,等.基于煤与麦秸秆共活化的超级电容器用活性炭电极材料的制备[J].煤炭学报,2012,37(8):1385.
25 Zhao Q, Wang X, Liu J, et al. Design and synthesis of three-dimensional hierarchical ordered porous carbons for supercapacitors[J].Electrochimica Acta,2015,154:110.
26 Sun X Z, Zhang X, Zhang D C, et al. Activated carbon-based supercapacitors using Li2SO4 aqueous electrolyte[J].Acta Physico-Chimica Sinica,2012.28(2):367(in Chinese).
孙现众,张熊,张大成,等.活性炭基Li2SO4水系电解液超级电容器[J].物理化学学报,2012,28(2):367.
27 Xing B L. Preparation and electrochemical performance of low-rank coal based activated carbon for supercapactior[D].Jiaozuo: Henan Polytechnic University,2011:148(in Chinese).
邢宝林.超级电容器用低阶煤基活性炭的制备及电化学性能研究[D].焦作:河南理工大学,2011.
[1] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[2] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[3] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[4] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[5] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[6] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[7] 苏婷, 宋永辉, 张珊, 田宇红, 兰新哲. 硝酸活化时间对煤基电极材料结构及性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 528-532.
[8] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[9] 黄嘉平, 崔海坡, 宋成利, 周宇. 不同材料对双极高频电刀温度场的影响[J]. 材料导报, 2018, 32(24): 4319-4323.
[10] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[11] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[12] 肖国庆, 勾黎敏, 丁冬海. 超级电容器用PVDC基碳电极的研究现状/肖国庆等超级电容器用PVDC基碳电极的研究现状[J]. 材料导报, 2018, 32(19): 3309-3317.
[13] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[14] 董文举, 孔令斌, 康龙, 冉奋. 超级电容器电极材料及器件的柔性化与微型化[J]. 材料导报, 2018, 32(17): 2912-2919.
[15] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed