Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3677-3688    https://doi.org/10.11896/j.issn.1005-023X.2018.21.001
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展
何云龙, 沈沪江, 王炜, 袁慧慧
中国科学院上海硅酸盐研究所能量转换材料重点实验室,上海 200050
A Review on the Electrode Materials of Flexible Dye-sensitized Solar Cells and Flexible Perovskite Solar Cells
HE Yunlong, SHEN Hujiang, WANG Wei, YUAN Huihui
State Key Laboratory of Materials for Energy Transportation, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050
下载:  全 文 ( PDF ) ( 2433KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 柔性太阳能电池具有轻便、可弯曲的优点,可用于可穿戴设备等器件的即时充电,具有广阔的应用前景,受到持续广泛的关注。柔性太阳能电池制备中的关键在于基材以及与之相关的电极材料的制备。本文综述了柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池近几年的发展情况,着重介绍了柔性染料敏化太阳能电池光阳极、对电极以及柔性钙钛矿太阳能电池的底电极和电子传输层。结果发现高温烧结目前仍是制备高效染料敏化太阳能电池光阳极不可避免的方法,而对电极则不受这一限制并且已经有多种材料的效率超过了高温烧结的铂。柔性钙钛矿太阳能电池的研究重点是用其他材料代替底电极中柔性较差的ITO以及高温烧结的电子传输材料TiO2,并且都取得显著成效。在此基础上,展望了柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何云龙
沈沪江
王炜
袁慧慧
关键词:  电极材料  柔性染料敏化太阳能电池  柔性钙钛矿太阳能电池    
Abstract: Flexible solar cells have received consistent and wide attention because of its wide prospect of application such as instant charging for wearable devices due to its advantages of lightweights and flexibility. The key role of the preparation of flexible solar cells is substrate and the preparation of related electrode materials. This article reviews the development of flexible dye-sensitized solar cells and flexible perovskite solar cells in recent years, especially introduces the photoanode and counter electrode of flexible dye-sensitized solar cells and the electric transport layer and base electrode of the solar perovskite solar cells.We find that sintering with high temperature is still inevitable to prepare high performance photoanode, while counter electrode is unrestricted and the performance of many materials is higher than Pt by sintering with high temperature. The main research of flexible perovskite solar cells is using other materials to replace ITO of base electrode for its bad flexibility and TiO2 of ETL for its preparation with high temperature, and the result is remarkable. On this basis, we propose the future development of flexible dye-sensitized solar cells and flexible perovskite solar cells.
Key words:  electrode materials    flexible dye-sensitized solar cells    flexible perovskite solar cells
               出版日期:  2018-11-10      发布日期:  2018-11-21
ZTFLH:  TM914.4  
基金资助: 国家863计划项目(2014AA052002); 中国科学院科技服务网络(STS)计划(KFJ-SW-STS-152); 上海市科学技术委员会科研计划项目(15DZ2281200)
作者简介:  何云龙:男,1988年生,助理研究员,研究方向为太阳能电池材料 E-mail:hyl@mail.sic.ac.cn;沈沪江:通信作者,1979年生,博士,高级工程师,研究方向为太阳能电池材料 E-mail:shenhujiang@mail.sic.ac.cn
引用本文:    
何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
HE Yunlong, SHEN Hujiang, WANG Wei, YUAN Huihui. A Review on the Electrode Materials of Flexible Dye-sensitized Solar Cells and Flexible Perovskite Solar Cells. Materials Reports, 2018, 32(21): 3677-3688.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.001  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3677
1 Kocaoglu B C, Icli K C, Ozenbas M.Optimization of selective electrophoretic deposition and isostatic compression of titania nanoparticles for flexible dye-sensitized solar cells[J].Electrochimica Acta,2016,196:535.
2 Choudhury M S H, Kishi N, Soga T. Compression of ZnO nanoparticle films at elevated temperature for flexible dye-sensitized solar cells[J].Journal of Alloys and Compounds,2016,656:476.
3 Han B S, Caliskan S, Sohn W, et al.Room temperature deposition of crystalline nanoporous ZnO nanostructures for direct use as flexible DSSC photoanode[J].Nanoscale Research Letters,2016,11(1):1.
4 Lin S Y, Wu J J.Chemical assembly of zinc oxide aggregated anodes on plastic substrates at room temperature for flexible dye-sensitized solar cells[J].Electrochimica Acta,2015,152:61.
5 Miao Q, Wu L, Cui J, et al.A new type of dye-sensitized solar cell with a multilayered photoanode prepared by a film-transfer technique[J].Advanced Materials,2011,23(24):2764.
6 Wu W Q, Xu Y F, Rao H S, et al.Multistack integration of three-dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized solar cells[J].Journal of the American Chemical Society,2014,136(17):6437.
7 Lin J, Heo Y U, Nattestad A, et al.Mesoporous hierarchical anatase for dye-sensitized solar cells achieving over 10% conversion efficiency[J].Electrochimica Acta,2015,153:393.
8 Dang X, Qi J, Klug M T, et al.Tunable localized surface plasmo-nenabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells[J].Nano Letters,2013,13(2):637.
9 Park J Y, Lee K H, Kim B S, et al.Enhancement of dye-sensitized solar cells using Zr/N-doped TiO2 composites as photoelectrodes[J].RSC Advances,2014,4(20):9946.
10 Kim C, Kim S, Lee M.Flexible dye-sensitized solar cell fabricated on plastic substrate by laser-detachment and press method[J].Applied Surface Science,2013,270:462.
11 Yoo K, Kim J Y, Lee J A, et al.Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates[J].ACS Nano,2015,9(4):3760.
12 Lee C H, Lu M D, Guan Q Z, et al.Thickness-controllable textured TiO2 underlayer for a flexible dye-sensitized solar cell sub-module[J].Materials Research Express,2014,1(2):025503.
13 Sabet M, Jahangiri H.Growth of TiO2 nanotubes on the Ti foil by anodizing method used in the flexible dye-sensitized solar cell in pre-sence of three counter electrodes[J].Journal of Materials Science:Materials in Electronics,2017,28(9):6566.
14 Xiao Y, Wu J, Lin J, et al.Low temperature fabrication of high performance p-n junction on the Ti foil for use in large-area flexible dye-sensitized solar cells[J].Electrochimica Acta,2014,117:1.
15 Liu W, Lu H, Zhang M, et al.Controllable preparation of TiO2 nanowire arrays on titanium mesh for flexible dye-sensitized solar cells[J].Applied Surface Science,2015,347:214.
16 Liu W, Wang H G, Wang X, et al.Titanium mesh supported TiO2 nanowire arrays/Nb-doped TiO2 nanoparticles for fully flexible dye-sensitized solar cells with improved photovoltaic properties[J].Journal of Materials Chemistry C,2016,4(47):11118.
17 Sheehan S, Surolia P K, Byrne O, et al.Flexible glass substrate based dye sensitized solar cells[J].Solar Energy Materials and Solar Cells,2015,132:237.
18 Liang J, Zhang G M, Yang Y C, et al.Highly ordered hierarchical TiO2 nanotube arrays for flexible fiber-type dye-sensitized solar cells[J].Journal of Materials Chemistry A,2014,2(46):19841.
19 Cai X, Hou S, Wu H, et al.All-carbon electrode-based fiber-shaped dye-sensitized solar cells[J].Physical Chemistry Chemical Physics,2012,14(1):125.
20 Li Z, Zhou Y, Yang Y, et al.Electrophoretic deposition of graphene-TiO2 hierarchical spheres onto Ti thread for flexible fiber-shaped dye-sensitized solar cells[J].Materials & Design,2016,105:352.
21 Song W, Wang H, Liu G, et al.Improving the photovoltaic performance and flexibility of fiber-shaped dye-sensitized solar cells with atomic layer deposition[J].Nano Energy,2016,19:1.
22 Li C T, Lee C T, Li S R, et al.Composite films of carbon black na-noparticles and sulfonated-polythiophene as flexible counter electrodes for dye-sensitized solar cells[J].Journal of Power Sources,2016,302:155.
23 Memon A A, Arbab A A, Sahito I A, et al.Synthesis of highly photo-catalytic and electro-catalytic active textile structured carbon electrode and its application in DSSCs[J].Solar Energy,2017,150:521.
24 Sahito I A, Sun K C, Arbab A A, et al.Flexible and conductive cotton fabric counter electrode coated with graphene nanosheets for high efficiency dye sensitized solar cell[J].Journal of Power Sources,2016,319:90.
25 Anothumakkool B, Agrawal I, Bhange S N, et al.Pt- and TCO-free flexible cathode for DSSC from highly conducting and flexible PEDOT paper prepared via in situ interfacial polymerization[J].ACS Applied Materials & Interfaces,2016,8(1):553.
26 Wu K, Ma J, Cui W, et al.The impact of metal ion doping on the performance of flexible poly (3,4-ethylenedioxythiophene) (PEDOT) cathode in dye-sensitized solar cells[J].Journal of Photoche-mistry and Photobiology A-Chemistry,2017,340:29.
27 Lee C P, Lai K Y, Lin C A, et al.A paper-based electrode using a graphene dot/PEDOT∶PSS composite for flexible solar cells[J].Nano Energy,2017,36:260.
28 Xu Q, Li M, Yan P, et al.Polypyrrole-coated cotton fabrics prepared by electrochemical polymerization as textile counter electrode for dye-sensitized solar cells[J].Organic Electronics,2016,29:107.
29 Tsai C H, Fei P H, Chen C H.Investigation of coral-like Cu2O nano/microstructures as counter electrodes for dye-sensitized solar cells[J].Materials,2015,8(9):5715.
30 Antonelou A, Syrrokostas G, Sygellou L, et al.Facile, substrate-scale growth of mono- and few-layer homogeneous MoS2 films on Mo foils with enhanced catalytic activity as counter electrodes in DSSCs[J].Nanotechnology,2016,27(4):045404.
31 Chen S L, Tao J, Tao H J, et al.High-performance and low-cost dye-sensitized solar cells based on kesterite Cu2ZnSnS4 nanoplate arrays on a flexible carbon cloth cathode[J].Journal of Power Sources,2016,330:28.
32 Chen T Y, Huang Y J, Li C T, et al.Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells[J].Nano Energy,2017,32:19.
33 Li R, Tang Q, Yu L, et al.Counter electrodes from conducting polymer intercalated graphene for dye-sensitized solar cells[J].Journal of Power Sources,2016,309:231.
34 Li C T, Lin Y F, Chiu I T, et al.TCO-free conducting polymers/carbon cloths as the flexible electro-catalytic counter electrodes for dye-sensitized solar cells[J].Journal of Materials Chemistry A,2015,3(48):24479.
35 Chiu I T, Li C T, Lee C P, et al.Nanoclimbing-wall-like CoSe2/carbon composite film for the counter electrode of a highly efficient dye-sensitized solar cell:A study on the morphology control[J].Nano Energy,2016,22:594.
36 Huang Y J, Fan M S, Li C T, et al.MoSe2 nanosheet/poly(3,4-ethylenedioxythiophene): Poly (styrenesulfonate) composite film as a Pt-free counter electrode for dye-sensitized solar cells[J].Electrochimica Acta,2016,211:794.
37 Kim H S, Lee C R, Im J H, et al.Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J].Scientific Reports,2012,2(8):591.
38 Yang W S, Noh J H, Jeon N J, et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J].Science,2015,348(6240):1234.
39 Grätzel M, Park N G.Organometal halide perovskite photovoltaics: A diamond in the rough[J].Nano,2014,9(5):1440002.
40 Kim H B, Choi H, Jeong J, et al.Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells[J].Nanoscale,2014,6(12):6679.
41 Qin F, Tong J, Ge R, et al.Indium tin oxide (ITO)-free, top-illuminated, flexible perovskite solar cells[J].Journal of Materials Chemistry A,2016,4(36):14017.
42 Nejand B A, Nazari P, Gharibzadeh S, et al.All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate[J].Chemical Communications,2017,53(4):747.
43 Yoon J, Sung H, Lee G, et al.Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources[J].Energy & Environmental Science,2017,10(1):337.
44 Li Y, Meng L, Yang Y, et al.High-efficiency robust perovskite solar cells on ultrathin flexible substrates[J].Nature Communications,2016,7:10214.
45 Lu H, Sun J, Zhang H, et al.Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells[J].Nanoscale,2016,8(11):5946.
46 Park J I, Heo J H, Park S H, et al.Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells[J].Journal of Power Sources,2017,341:340.
47 Qiu L, He S, Yang J, et al.Fiber-shaped perovskite solar cells with high power conversion efficiency[J].Small,2016,12(18):2419.
48 Roldan-Carmona C, Malinkiewicz O, Soriano A, et al.Flexible high efficiency perovskite solar cells[J].Energy & Environmental Science,2014,7(3):994.
49 Jung J W, Williams S T, Jen A K Y. Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments[J].RSC Advances,2014,4(108):62971.
50 Ameen S, Akhtar M S, Seo H K, et al.An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: Optoelectronic transient and charge trapping studies[J].Journal of Physical Chemistry C,2015,119(19):10379.
51 Ameen S, Akhtar M S, Seo H K, et al.Exclusion of metal oxide by an RF sputtered Ti layer in flexible perovskite solar cells: Energetic interface between a Ti layer and an organic charge transporting layer[J].Dalton Transactions,2015,44(14):6439.
52 Das S, Yang B, Gu G, et al.High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing[J].ACS Photonics,2015,2(6):680.
53 Dkhissi Y, Huang F, Rubanov S, et al.Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%[J].Journal of Power Sources,2015,278:325.
54 Lee M, Jo Y, Kim D S, et al.Efficient, durable and flexible perovskite photovoltaic devices with Ag-embedded ITO as the top electrode on a metal substrate[J].Journal of Materials Chemistry A,2015,3(28):14592.
55 Shin S S, Yang W S, Noh J H, et al.High-performance flexible pe-rovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 ℃[J].Nature Communications,2015,6:7410.
56 Tavakoli M M, Tsui K H, Zhang Q, et al.Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures[J].ACS Nano,2015,9(10):10287.
57 Troughton J, Bryant D, Wojciechowski K, et al.Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates[J].Journal of Materials Chemistry A,2015,3(17):9141.
58 Wang X, Li Z, Xu W, et al.TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode[J].Nano Energy,2015,11:728.
59 Heo J H, Lee M H, Han H J, et al.Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells[J].Journal of Materials Chemistry A,2016,4(5):1572.
60 Jeong I, Jung H, Park M, et al.A tailored TiO2 electron selective layer for high-performance flexible perovskite solar cells via low temperature UV process[J].Nano Energy,2016,28:380.
61 Jo J W, Seo M S, Park M, et al.Improving performance and stability of flexible planar-heterojunction perovskite solar cells using polymeric hole-transport material[J].Advanced Functional Materials,2016,26(25):4464.
62 Liu Z, You P, Xie C, et al.Ultrathin and flexible perovskite solar cells with graphene transparent electrodes[J].Nano Energy,2016,28:151.
63 Park M, Kim J Y, Son H J, et al.Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells[J].Nano Energy,2016,26:208.
64 Tavakoli M M, Lin Q, Leung S F, et al.Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates[J].Nanoscale,2016,8(7):4276.
65 Wei J, Li H, Zhao Y, et al.Flexible perovskite solar cells based on the metal-insulator-semiconductor structure[J].Chemical Communications,2016,52(71):10791.
66 Bi C, Chen B, Wei H, et al.Efficient flexible solar cell based on composition-tailored hybrid perovskite[J].Advanced Materials, DOI: 10.1002/adma.201605900.
67 Ha J, Kim H, Lee H, et al.Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C-60 assisted by polyethylenimine ethoxylated interfacial layers[J].Solar Energy Materials and Solar Cells,2017,161:338.
68 Heo J H, Jahandar M, Moon S J, et al.Inverted CH3NH3PbI3 perovskite hybrid solar cells with improved flexibility by introducing a polymeric electron conductor[J].Journal of Materials Chemistry C,2017,5(11):2883.
69 Jung J W, Park J S, Han I K, et al.Flexible and highly efficient pe-rovskite solar cells with a large active area incorporating cobalt-doped poly(3-hexylthiophene) for enhanced open-circuit voltage[J].Journal of Materials Chemistry A,2017,5(24):12158.
70 Mali S S, Hong C K, Inamdar A I, et al.Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO2 electron transporting layers[J].Nanoscale,2017,9(9):3095.
71 Zhou P, Li W, Li T, et al.Ultrasonic spray-coating of large-scale TiO2 compact layer for efficient flexible perovskite solar cells[J].Micromachines,2017,8(2):55.
72 Ciro J, Mesa S, Montoya J F, et al.Simultaneous top and bottom perovskite interface engineering by fullerene surface modification of titanium dioxide as electron transport layer[J].ACS Applied Mate-rials & Interfaces,2017,9(35):29654.
73 Feng J, Yang Z, Yang D, et al.E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells[J].Nano Energy,2017,36:1.
74 Liu X, Chueh C C, Zhu Z, et al.Highly crystalline Zn2SnO4 nano-particles as efficient electron-transporting layers toward stable inverted and flexible conventional perovskite solar cells[J].Journal of Materials Chemistry A,2016,4(40):15294.
75 Wang K, Shi Y, Gao L, et al.W(Nb)O-x-based efficient flexible perovskite solar cells: From material optimization to working principle[J].Nano Energy,2017,31:424.
76 Tong G, Song Z, Li C, et al.Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer[J].RSC Advances,2017,7(32):19457.
[1] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[2] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[3] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[4] 苏婷, 宋永辉, 张珊, 田宇红, 兰新哲. 硝酸活化时间对煤基电极材料结构及性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 528-532.
[5] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[6] 黄嘉平, 崔海坡, 宋成利, 周宇. 不同材料对双极高频电刀温度场的影响[J]. 材料导报, 2018, 32(24): 4319-4323.
[7] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[8] 谭永涛, 孔令斌, 康龙, 冉奋. Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 《材料导报》期刊社, 2018, 32(1): 47-50.
[9] 梁兴, 高国华, 吴广明. 氧化钒作锂离子电池正极材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 12-33.
[10] 张亚婷, 任绍昭, 党永强, 刘国阳, 李可可, 周安宁, 邱介山. 煤基三维石墨烯基电极在不同电解液中的电化学性能*[J]. 《材料导报》期刊社, 2017, 31(16): 1-5.
[11] 余剑武, 胡其丰, 段文, 何利华, 沈湘. 电加工8418钢的能量分配与表面粗糙度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 153-157.
[12] 何博, 潘宇飞, 陆敏. 石墨烯基储能材料的增材制造研究进展[J]. 《材料导报》期刊社, 2017, 31(13): 126-130.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed