Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3689-3696    https://doi.org/10.11896/j.issn.1005-023X.2018.21.002
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用
王青福, 刘新刚, 康文彬, 张楚虹
四川大学高分子研究所,高分子材料工程国家重点实验室,成都 610065
Preparation of Fe3O4/Nitrogen-doped Graphene Composite via Solid-state Shear Pan-milling Method and Its Application in Lithium Ion Battery
WANG Qingfu, LIU Xingang, KANG Wenbin, ZHANG Chuhong
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065
下载:  全 文 ( PDF ) ( 3546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 固相剪切磨盘碾磨法是一种基于全固相反应、不同于传统球磨方法制备微纳米基功能复合材料的新方法。本文以石墨和纳米四氧化三铁为原料,三聚氰胺为氮掺杂剂,采用固相剪切磨盘碾磨法,成功制备了四氧化三铁/氮掺杂石墨烯复合材料(Fe3O4/N-G)。通过X射线衍射(XRD)、拉曼光谱(RM)、透射电镜(TEM)、X射线光电子能谱(XPS)、比表面积(BET)测试和电化学测试对样品结构、形貌和电化学性能进行表征。测试结果显示:该方法能够在将石墨剥离成少数层石墨烯的同时,实现石墨烯的氮掺杂以及与Fe3O4的均匀复合,最终制得Fe3O4/N-G复合材料;将该复合材料作为锂离子电池负极材料,表现出优异的循环稳定性,在100 mA·g-1的电流密度下经过100次循环后,Fe3O4/N-G可逆比容量保持在869 mAh·g-1,远高于纯Fe3O4的78 mAh·g-1。该方法为制备石墨烯基复合电极材料提供了绿色环保、简便易行的新方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王青福
刘新刚
康文彬
张楚虹
关键词:  四氧化三铁/氮掺杂石墨烯复合材料  固相剪切磨盘碾磨  锂离子电池    
Abstract: Different from traditional ball milling, solid-state shear pan-milling is an innovative approach that enables the synthesis of functional micro- and nano-composites. When graphite and nanometer scale Fe3O4 are applied as the raw material and melamine as the nitrogen doping agent, a composite of Fe3O4 and N-doped graphene (Fe3O4/N-G) could be successfully synthesized by employing the solid-state shearing pan-milling method. After characterization by X-ray diffraction (XRD), Raman spectroscopy (RM), transmission electronic microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer, Emmett and Teller analysis (BET) and electrochemical measurements, it is found that graphite could be exfoliated into few-layered graphene while simultaneously doped by nitrogen and composited with Fe3O4 uniformly. When applied as an anode for lithium ion battery, an excellent cycling stability with a reversible capacity of 869 mAh·g-1 after 100 cycles at 100 mA·g-1 is delivered, which is far superior to pristine Fe3O4 with only 78 mAh·g-1 retained. The technique provides a green, and facile method for the preparation of graphene based composite electrode materials.
Key words:  Fe3O4/nitrogen-doped graphene composite    solid-state shear pan-milling    lithium ion battery
               出版日期:  2018-11-10      发布日期:  2018-11-21
ZTFLH:  O646  
基金资助: 国家973重大科学研究计划青年科学家专项(2013CB934700); 国家自然科学基金(51222305; 51673123); 四川省科技计划项目青年基金(2016JQ0049)
作者简介:  王青福:男,1991年生,硕士研究生,研究方向为锂离子电池复合电极材料 E-mail:18053239573@163.com;张楚虹:通信作者,女,1977年生,教授,博士研究生导师,主要研究方向为新能源材料、锂离子电池 E-mail:chuhong.zhang@scu.edu.cn
引用本文:    
王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
WANG Qingfu, LIU Xingang, KANG Wenbin, ZHANG Chuhong. Preparation of Fe3O4/Nitrogen-doped Graphene Composite via Solid-state Shear Pan-milling Method and Its Application in Lithium Ion Battery. Materials Reports, 2018, 32(21): 3689-3696.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.002  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3689
1 Tarascon J M, Armand M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414(6861):359.
2 Hui W, Yi C.Designing nanostructured Si anodes for high energy lithium ion batteries[J].Nano Today,2012,7(5):414.
3 Lin K Z, Wang X L, Xu Y H.Recent development of tin-based materials as anode of the lithium ion battery[J].Chinese Journal of Power Sources,2005,1:019
4 Poizot P, Laruelle S, Grugeon S, et al.Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J].Nature,2001,32(3):496.
5 Zhang W M, Wu X L, Hu J S, et al.Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries[J].Advanced Functional Materials,2010,18(24):3941.
6 Cui Z M, Jiang L Y, Song W G, et al.High-yield gas-liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries[J].Chemistry of Materials,2015,21(6):1162.
7 Guo C, Wang L, Zhu Y, et al.Fe3O4 nanoflakes in an N-doped carbon matrix as high-performance anodes for lithium ion batteries[J].Nanoscale,2015,7(22):10123.
8 Muraliganth T, Murugan A V, Manthiram A.ChemInform abstract: Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries[J].Chemical Communications,2009,41(47):7360.
9 Liu H, Wang G, Wang J, et al.Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries[J].Electrochemistry Communications,2008,10(12):1879.
10 Ma F X, Wu H B, Xu C Y, et al.Self-organized sheaf-like Fe3O4/C hierarchical microrods with superior lithium storage properties[J].Nanoscale,2015,7(10):4411.
11 Geim A K.Graphene: Status and prospects[J].Science,2009,324(5934):1530.
12 Zhou G, Wang D W, Li F, et al.Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries[J].Chemistry of Materials,2010,22(18):5306.
13 Li X, Huang X, Liu D, et al.Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery[J].Journal of Physical Chemistry C,2011,115(44):21567.
14 Su J, Cao M, Ren L, et al.Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties[J].Journal of Physical Chemistry C,2011,115(30):14469.
15 Wu Z S, Ren W, Xu L, et al.Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J].ACS Nano,2011,5(7):5463.
16 Liu C, Liu X G, Tan J, et al.Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode[J].Journal of Power Sources,2017,342:157.
17 Liu Z W, Peng F, Wang H J, et al.Phosphorus-doped graphite la-yers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J].Angewandte Chemie International Edition,2011,50(14):3257.
18 Liu Y, Huang K, Luo H, et al.Nitrogen-doped graphene-Fe3O4 architecture as anode material for improved Li-ion storage[J].RSC Advances,2014,4(34):17653.
19 Jiao J, Qiu W, Tang J, et al.Synthesis of well-defined Fe3O4, nanorods/N-doped graphene for lithium-ion batteries[J].Nano Research,2016,9(5):1.
20 Jiang Z J, Jiang Z.Fabrication of nitrogen-doped holey graphene hollow microspheres and their use as an active electrode material for lithium ion batteries[J].ACS Applied Materials & Interfaces,2014,6(21):19082.
21 Zhu H, Cao Y, Zhang J, et al.One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithium-ion batteries[J].Journal of Materials Science,2016,51(8):3675.
22 Wei P, Bai S.Fabrication of a high-density polyethylene/graphene composite with high exfoliation and high mechanical performance via solid-state shear milling[J].RSC Advances,2015,5(114):93697.
23 Li Z Q, Lu C J, Xia Z P, et al.X-ray diffraction patterns of graphite and turbostratic carbon[J].Carbon,2007,45(8):1686.
24 Jeon I Y, Choi H J, Ju M J, et al.Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion[J].Scientific Reports,2013,3(30):2260.
25 Zhang M, Liu L, He T, et al.Melamine assisted solid exfoliation approach for the synthesis of few-layered fluorinated graphene nanosheets[J].Materials Letters,2016,171:191.
26 Li L, Dou Y, Wang L, et al.One-step synthesis of high-quality N-doped graphene/Fe3O4 hybrid nanocomposite and its improved supercapacitor performances[J].RSC Advances,2014,4(49):25658.
27 Chen S, Duan J, Ran J, et al.N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst[J].Energy & Environmental Science,2013,6(12):3693.
28 Lin Y C, Lin C Y, Chiu P W.Controllable graphene N-doping with ammonia plasma[J].Applied Physics Letters,2010,96(13):133110.
29 Lu W, Shen Y, Xie A, et al.Green synthesis and characterization of superparamagnetic Fe3O4, nanoparticles[J].Journal of Magnetism & Magnetic Materials,2010,322(13):1828.
30 Wal R L V, Tomasek A J, Pamphlet M I, et al. Analysis of HRTEM images for carbon nanostructure quantification[J].Journal of Nanoparticle Research,2004,6(6):555.
31 Zhang C, Fu L, Liu N, et al.Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources[J].Advanced Mate-rials,2011,23(8):1020.
32 Qin G, Fang Z, Wang C.Template free construction of a hollow Fe3O4 architecture embedded in an N-doped graphene matrix for lithium storage[J].Dalton Transactions,2015,44(12):5735.
33 Liu Y, Yu L, Ong C N, et al.Nitrogen-doped graphene nanosheets as reactive water purification membranes[J].Nano Research,2016,9(7):1983.
34 Geng D, Yang S, Zhang Y, et al.Nitrogen doping effects on the structure of graphene[J].Applied Surface Science,2011,257(21):9193.
35 Sivakkumar S R, Milev A S, Pandolfo A G.Effect of ball-milling on the rate and cycle-life performance of graphite as negative electrodes in lithium-ion capacitors[J].Electrochimica Acta,2011,56(27):9700.
36 Shan H, Li X, Cui Y, et al.Sulfur/nitrogen dual-doped porous graphene aerogels enhancing anode performance of lithium ion batteries[J].Electrochimica Acta,2016,205:188.
37 Wang L, Yu Y, Chen P C, et al.Electrospinning synthesis of C/Fe3O4, composite nanofibers and their application for high perfor-mance lithium-ion batteries[J].Journal of Power Sources,2008,183(2):717.
38 Wang J Z, Zhong C, Wexler D, et al.Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lit-hium ion batteries[J].Chemistry (Weinheim an der Bergstrasse, Germany),2011,17(2):661.
39 Jin S, Deng H, Long D, et al.Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lit-hium-ion battery anodes[J].Journal of Power Sources,2011,196(8):3887.
40 Fu C, Zhao G, Zhang H, et al.A facile route to controllable synthesis of Fe3O4/graphene composites and their application in lit-hiumion batteries[J].International Journal of Electrochemical Science,2014,9(1):46.
41 Bhuvaneswari S, Pratheeksha P M, Anandan S, et al.Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries[J].Physical Chemistry Chemical Physics,2014,16(11):5284.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[3] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[4] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[5] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[6] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[7] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[8] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[9] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[10] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[11] 丁昂, 张钟元, 程厅, 董星龙. 中空硅纳米球锂离子电池负极材料的制备及电化学性能[J]. 《材料导报》期刊社, 2018, 32(11): 1791-1794.
[12] 陈坚, 徐晖. 石墨烯及其纳米复合材料作为锂离子电池负极的研究进展*[J]. CLDB, 2017, 31(9): 36-44.
[13] 金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
[14] 张冠群,许州,刘建雄,杨艳蓉,刘成,程琪,于晓华. 二次水热法制备鸟巢状TiO2/Co3O4纳米结构及其锂电性能*[J]. 材料导报编辑部, 2017, 31(22): 5-9.
[15] 张婷, 李爱菊, 张丽田, 陈红雨. 苯甲酸钠改性石墨作为锂离子电池负极材料的性能[J]. 《材料导报》期刊社, 2017, 31(18): 5-10.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed