Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2287-2292    https://doi.org/10.11896/cldb.18060035
  无机非金属及其复合材料 |
纤维状多孔钴酸锌的可控制备及电化学性能
湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚
中南大学冶金与环境学院, 长沙 410083
Controllable Synthesis and Electrochemical Performance of Fibrous ZnCo2O4 with Porous Structure
ZHAN Jing, LONG Yiyu, LU Erju, LI Qihou, WANG Zhijian
School of Metallurgy and Environment, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 2816KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以ZnCl2、CoCl2·6H2O和草酸为原料,利用氨水为配位剂和溶液pH值调节剂,采用配位共沉淀-热分解法制备纤维状多孔钴酸锌粉末;采用X射线衍射仪、扫描电镜、透射电镜、红外光谱仪以及比表面积仪对ZnCo2O4粉末的形貌和结构进行了表征,考察了溶液pH值对前驱体粉末形貌和分散性的影响,并通过电化学工作站以及蓝电测试系统考察了不同热分解温度下的ZnCo2O4粉末作为锂离子电池负极材料的电化学性能以及钴酸锌粉末的脱嵌锂机制。结果表明:氨与锌钴离子配合生成草酸锌钴氨复盐是形成纤维状钴酸锌前驱体粉末的内在机制;热分解得到的钴酸锌粉末继承了前驱体的形貌,呈纤维状,比表面积为141 m2·g-1,平均孔径为8.7 nm。热分解温度为350 ℃时所得的钴酸锌粉末在100 mA·g-1的电流密度下,起始比容量为1 504 mAh·g-1,循环50次后,可逆比容量保持在987.2 mAh·g-1,可逆容量保持率为96.2%;并且在500 mA·g-1的电流密度下,其容量仍能保持在565.7 mAh·g-1,表明该纤维状钴酸锌粉末具有良好的循环性能和倍率性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
湛 菁
龙怡宇
陆二聚
李启厚
王志坚
关键词:  锂离子电池  负极材料  钴酸锌  电化学性能  纤维状    
Abstract: Porous fibrous ZnCo2O4 powders were synthesized by coordination precipitation-thermal decomposition method using ZnCl2, CoCl2·6H2O and oxalic acid as raw materials, and ammonia as coordination agent and pH adjustor. The morphology and structure of ZnCo2O4 powders were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy and N2 adsorption/desorption analysis. The effect of solution pH value on the morphology of the precursor was investigated. The electrochemical properties and the litihation/de-lithiation mechanism of the as-prepared ZnCo2O4 powders at different decomposition temperature were also tested by CHI and LAND exam system. The results indicated that generation of ammonia-containing cobalt-zinc oxalate complex salt, which results from the coordination of ammonia with cobalt and zinc ions, is the intrinsic mechanism of the formation of precursor’s fibrous morphology. The as-prepared ZnCo2O4 powders inherit the morphology of the precursor with porous fibrous structure, specific surface area of 141 m2·g-1 and average pore diameter of 8.7 nm. These favorable characteristics contribute to satisfactory cycling performance and reasonable rating performance of the resultant ZnCo2O4 powders as anode materials of lithium battery. At a current density of 100 mA·g-1, the porous fibrous ZnCo2O4 powders obtained at the decomposition temperature displayed delivered an initial capacity of 1 504 mAh·g-1 and kept the reversible specific capacity of 987.2 mAh·g-1 after 50 charge/discharge cycles with a reversible capacity retention of 96.2%. Furthermore, the material was able to remain a capacity of 565.7 mAh·g-1 at a current density as high as 500 mA·g-1.
Key words:  lithium-ion battery    anode materials    ZnCo2O4    electrochemical performance    fibrous
                    发布日期:  2019-06-19
ZTFLH:  TQ152  
基金资助: 国家自然科学基金委青年项目(51404306);中南大学加纳基金项目(JNJJ201613)
通讯作者:  liqihou@csu.edu.cn   
作者简介:  湛菁,工学博士,硕士研究生导师。中南大学“531”人才计划入选者;国际矿物、冶金材料学会(TMS)会员;Metallurgical and Materials Transactions B、Journal of Hazardous Materials、Hydrometallurgy、Electrochi-mica Acta等国际期刊审稿人。主持教育部博士学科专项科研基金、国家博士后基金、湖南省自然科学基金、湖南省科技计划项目,以及一批企业横向合作项目等;参与了国家自然科学基金、国家863计划、国家重点研发计划、湖南省科技攻关与重大科技成果转化项目、湖南省科技计划重点项目等;发表SCI、EI收录文章50余篇,授权专利10余项;获省部级科技发明一等奖1项。李启厚,工学博士,中南大学教授,博士生导师。主持国家自然科学基金面上项目一次,参与多次,发表国内外期刊20余篇,授权专利10余项,获得湖南省科学进步二等奖一次。
引用本文:    
湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
ZHAN Jing, LONG Yiyu, LU Erju, LI Qihou, WANG Zhijian. Controllable Synthesis and Electrochemical Performance of Fibrous ZnCo2O4 with Porous Structure. Materials Reports, 2019, 33(14): 2287-2292.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060035  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2287
1 Huang X H, Xia X H, Yuan Y F, et al. Electrochimica Acta, 2011, 56(14),4960.
2 Wen Z, Zheng F, Jiang Z, et al. Journal of Materials Science, 2013, 48(1), 342.
3 Yan N, Hu L, Li Y, et al. Journal of Physical Chemistry C, 2012, 116(12),7227.
4 Bai J, Li X G, Liu G Z, et al. Advanced Functional Materials, 2014, 24(20), 3012.
5 Koo W T, Jang H Y, Kim C, et al. Journal of Materials Chemistry A, 2017, 5,22717.
6 Chen R, Hu Y, Shen Z, et al. Journal of Materials Chemistry A, 2017, 5, 21679.
7 Zhao J, Li C, Zhang Q, et al. Journal of Materials Chemistry A, 2017, 5, 6928.
8 Wang S B, Ding Z X, Wang X C. Chemical Communication, 2015, 51, 1517.
9 Naik K K, Rout C S. RSC Advance, 2015, 5(97), 79397.
10 Zhen X, Guo X J. Acta Physico-Chimica Sinica, 2017, 33(4), 845(in Chinese).
甄绪,郭雪静. 物理化学学报, 2017, 33(4), 845.
11 Wang W, Yang Y, Yang S, et al. Electrochimica Acta, 2015, 155, 297.
12 Pan Y, Zeng W, Zhang Y, et al. Nano-Micro Letters, 2017, 9(20), 1.
13 Luo W, Hu X, Sun Y, et al. Journal of Materials Chemistry A, 2012, 22(18), 8916.
14 Zhang C F, Wu J H, Zhan J, et al. Nonferrous Metals, 2003, 55(3), 25(in Chinese).
张传福,邬建辉,湛菁,等. 有色金属工程, 2003, 55(3), 25.
15 Zhan J, Cai M, Zhang C F, et al. Electrochimica Acta, 2015, 154, 70.
16 Zhan J, Zhou D F, Zhang C F et al. Transactions of Nonferrous Metals Society of China, 2011, 21(3),544.
17 Tong Q, Tao X Q. Journal of Central South University Science and Technology, 2012, 43(11), 4165(in Chinese).
童秋, 桃肖奇. 中南大学学报(自然科学版), 2012, 43(11), 4165.
18 Fu J X, Wong W T, Liu W R, et al. RSC Advance, 2015, 5(93),75838.
19 Nuli Y N, Chu Y Q, Qin Q Z, et al. Journal of Electrochemical Society, 2003, 151(7), A1077.
20 Deng J,Yu X,He Y, et al. Energy storage Materials, 2017, 6,61.
21 Zhen M, Liu L, Wang C, et al. Microporous and Mesoporous Materials, 2017, 246, 130.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[3] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[4] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[5] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[6] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[7] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[8] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[9] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[10] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[11] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[12] 马志鸣, 肖仁贵, 廖霞, 柯翔. 片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响[J]. 材料导报, 2018, 32(19): 3325-3331.
[13] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[14] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[15] 邓安强, 罗永春, 王浩, 赵磊, 罗元魁. 退火处理对A2B7型La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1[J]. 材料导报, 2018, 32(15): 2565-2570.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed