Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1088-1093    https://doi.org/10.11896/j.issn.1005-023X.2018.07.007
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
水热炭化-KOH活化制备核桃壳活性炭电极材料的研究
张传涛1,2, 邢宝林1,2, 黄光许1,2, 张双杰3, 张传祥1,2, 史长亮1,2, 朱阿辉1, 姚友恒1, 张青山1
1 河南理工大学化学化工学院,焦作 454000;
2 煤炭安全生产河南省协同创新中心,焦作 454000;
3 多氟多化工股份有限公司,焦作 454191
Preparation of Walnut Shell Activated Carbons via Combination of Hydrothermal Carbonization and KOH Activation
ZHANG Chuantao1,2, XING Baolin1,2, HUANG Guangxu1,2, ZHANG Shuangjie3, ZHANG Chuanxiang1,2, SHI Changliang1,2, ZHU Ahui1, YAO Youheng1, ZHANG Qingshan1
1 College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000;
2 Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo 454000;
3 Do-Fluoride Chemicals Co., Ltd., Jiaozuo 454191
下载:  全 文 ( PDF ) ( 2034KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以核桃壳为原料,经水热炭化-KOH活化制备活性炭,并将其用作超级电容器电极材料。采用低温氮气吸附、扫描电镜(SEM)及X射线光电子能谱(XPS)等手段系统研究核桃壳活性炭的微观结构及表面化学性质,并利用恒流充放电、循环伏安等探讨其对应电极材料的电化学性能。研究表明,在碱碳比为3∶1、活化温度为800 ℃、活化时间为1 h的条件下,核桃壳水热炭经KOH活化可制备出比表面积为1 236 m2/g、总孔容为0.804 cm3/g、中孔比例为38.3%的活性炭。该核桃壳活性炭用作电极材料在KOH电解液中具有优异的电化学特性,其在50 mA/g电流密度下的比电容可达251 F/g,5 000 mA/g电流密度下的比电容为205 F/g,且具有良好的循环稳定性,1 000次循环后比电容保持率达92.4%,是一种比较理想的超级电容器电极材料。核桃壳活性炭优异的电化学性能与其相互贯通的层次孔结构和独特的含氧表面密切相关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张传涛
邢宝林
黄光许
张双杰
张传祥
史长亮
朱阿辉
姚友恒
张青山
关键词:  核桃壳  水热炭化  活性炭  电极材料  电化学性能    
Abstract: Activated carbons applied as electrode materials for supercapacitors were prepared from walnut shell via hydrothermal carbonization and KOH activation. The microstructure and surface chemical property of activated carbons were characterized by low temperature N2 adsorption, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The electroche-mical performances of activated carbon electrode materials were also investigated by galvanostatic charge/discharge and cyclic voltammetry in 3 mol/L KOH aqueous electrolyte. The results show that walnut shell activated carbon with a specific surface of 1 236 m2/g, total pore volume of 0.804 cm3/g, mesopore percentage of 38.3% was obtained at KOH/hydrothermal carbon ratio of 3, activation temperature of 800 ℃ and activation time of 1 h. The walnut shell activated carbon applied as electrode materials for supercapacitor exhibited an excellent electrochemical performance and superior cycling performance in KOH aqueous electrolyte. The gravimetric specific capacitance was as high as 251 F/g at a current density of 50 mA/g and still remained 205 F/g even at a current density of 5 000 mA/g, and 92.4% of the initial specific capacitance was retained after 1 000 cycles. The superior electrochemical performance of walnut shell activated carbons were strongly related to their interconnected hierarchical pore structure and unique oxygen-enriched surface.
Key words:  walnut shell    hydrothermal carbonization    activated carbon    electrode material    electrochemical performance
出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TQ424.1  
基金资助: 国家自然科学基金(51404098;U1361119);河南省国际科技合作项目(152102410047);河南省科技攻关项目(152102210107);河南省教育厅科学技术重点研究项目(14A440014);国家级大学生创新创业训练计划项目(201610460040;201610460044)
通讯作者:  邢宝林:通信作者,男,1982年生,博士,副教授,主要从事洁净煤技术及新型炭材料方面的研究 E-mail:baolinxing@hpu.edu.cn   
作者简介:  张传涛:男,1991年生,硕士研究生,研究方向为洁净煤技术 E-mail:zct203@163.com
引用本文:    
张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
ZHANG Chuantao, XING Baolin, HUANG Guangxu, ZHANG Shuangjie, ZHANG Chuanxiang, SHI Changliang, ZHU Ahui, YAO Youheng, ZHANG Qingshan. Preparation of Walnut Shell Activated Carbons via Combination of Hydrothermal Carbonization and KOH Activation. Materials Reports, 2018, 32(7): 1088-1093.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.007  或          https://www.mater-rep.com/CN/Y2018/V32/I7/1088
1 Frackowiak E, Abbas Q, Béguin F. Carbon/carbon supercapacitors[J].Journal of Energy Chemistry,2013,22(2):226
2 Xing B L, Huang G X, Chen L J, et al. Current situation and prospect of research on electrode materials for supercapacitor[J].Mate-rials Review A:Review Papers,2012,26(10):21(in Chinese).
邢宝林,黄光许,谌伦建,等.超级电容器电极材料的研究现状与展望[J].材料导报:综述篇,2012,26(10):21.
3 Lan D, Chen Y, Chen P, et al. Mesoporous CoO nanocubes @ continuous 3D porous carbon skeleton of rose-based electrode for high-performance supercapacitor[J].Applied Materials & Interfaces,2014,6(15):11839.
4 Xing B L, Guo H, Chen L J, et al. Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors[J].Fuel Processing Technology,2015,138:734.
5 Redondo E, Carretero-González J, Goikolea E, et al. Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits[J].Electrochimica Acta,2015,160:178.
6 Jiang L, Yan J, Hao L, et al. High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors[J].Carbon,2013,56:146.
7 Fan Y, Yang X, Zhu B, et al. Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors[J].Journal of Power Sources,2014,268:584.
8 Nowicki P, Wachowska H, Pietrzak R. Active carbons prepared by chemical activation of plum stones and their application in removal of NO2[J].Journal of Hazardous Materials,2010,181(1):1088.
9 Xie R, Wang H, Chen Y, et al. Walnut shell-based activated carbon with excellent copper (Ⅱ) adsorption and lower chromium (Ⅵ) removal prepared by acid-base modification[J].Environmental Progress & Sustainable Energy,2013,32(3):688.
10Guo H, Zhang J S, Zhu T X, et al. Preparation of high specific surface area activated carbon electrode materials from walnut shell[J].Materials Review B:Research Papers,2016,30(1):24(in Chinese).
郭晖,张记升,朱天星,等.利用核桃壳制备高比表面积活性炭电极材料的研究[J].材料导报:研究篇,2016,30(1):24.
11Wang L Z, Wen H L, Sun S M, et al. The preparation of mesoporous activated carbon by microwave radiation heating walnut shell[J].Functional Materials,2014,45(18):18144(in Chinese).
王力臻,闻红丽,孙淑敏,等.以核桃壳为碳源微波加热制备介孔活性炭[J].功能材料,2014,45(18):18144.
12Yang J, Qiu K. Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal[J].Chemical Engineering Journal,2010,165(1):209.
13 Wu Q F, Zhang F S. Progress on hydrothermal carbonization of waste biomass[J].Environ Pollut Control,2012,34(7):70(in Chinese).
吴倩芳,张付申.水热炭化废弃生物质的研究进展[J].环境污染与防治,2012,34(7):70.
14 Huang W, Fan T X. Research progress of hydrothermal carbonization method[J].Materials Review A: Review Papers,2014,28(12):131 (in Chinese).
黄维,范同祥.水热碳化法的研究进展[J].材料导报:综述篇,2014,28(12):131.
15 Jain A, Balasubramanian R, Srinivasan M P. Hydrothermal conversion of biomass waste to activated carbon with high porosity:A review[J].Chemical Engineering Journal,2016,283:789.
16 Xing B L, Chen L J, Zhang C X, et al. Activation mechanism of lignite-based activated carbon prepared by KOH activation[J].Journal of China University of Mining & Tecnology,2014,43(6):1038(in Chinese).
邢宝林,谌伦建,张传祥,等.KOH活化法制备褐煤基活性炭的活化机理研究[J].中国矿业大学学报,2014,43(6):1038.
17 Yu H, Cho S, Jung M, et al. Electrochemical and structural characteristics of activated carbon-based electrodes modified via phosphoric acid[J].Microporous and Mesoporous Materials,2013,172:131.
18 Du X, Wang C Y, Shi Z Q, et al. Effects of oxygen functional groups on the electrochemical performance of activated carbon[J].Journal of Tianjin University,2006,39(12):1479(in Chinese).
杜嬛,王成扬,时志强,等.表面含氧官能团对活性炭电化学性能的影响[J].天津大学学报,2006,39(12):1479.
19 Inagaki M, Konno H, Tanaike O. Carbon materials for electroche-mical capacitors[J].Journal of Power Sources,2010,195(24):7880.
20Zhang D S, Deng C J, Xia X H, et al. Influence of pore structure on the electrochemical performance of high specific surface area bamboo char-based activated carbon[J].Chemistry and Industry of Forest Products,2010,30(5):25(in Chinese).
张东升,邓丛静,夏笑虹,等.高比表面积竹炭基活性炭的孔结构对电容性能的影响[J].林产化学与工业,2010,30(5):25.
21Zhu Y J, Dai F, Wang J J, et al. High specific surface area carbon/carbon electrochemical capacitor in aqueous Na2SO4 electrolyte[J].New Chemical Materials,2016,44(11):143(in Chinese).
朱杨军,代芳,王姣姣,等.高比表面积活性炭基水系Na2SO4电化学电容器的制备[J].化工新型材料,2016,44(11):143.
22Cai T, Zhou M, Ren D, et al. Highly ordered mesoporous phenol-formaldehyde carbon as supercapacitor electrode material[J].Journal of Power Sources,2013,231:197.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[3] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[4] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[5] 张佳倩, 王坤俊, 杨超, 杨颂, 上官炬, 王冰凝, 刘守军. 浸渍活性炭吸附放射性碘甲烷后失活机理研究[J]. 材料导报, 2024, 38(7): 22090123-5.
[6] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[7] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[8] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[9] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[10] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[11] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[12] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[13] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[14] 高雅倩, 赵亚娟, 谢会东, 胡昌宇, 王逸博, 王康康, 杨厂. 高比电容MOF衍生的介孔球状Co3O4/NiO/CuO[J]. 材料导报, 2024, 38(12): 22110033-7.
[15] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed