Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23040255-12    https://doi.org/10.11896/cldb.23040255
  无机非金属及其复合材料 |
表面处理技术在储氢材料中的应用研究进展
刘泉宇1,2, 彭程1,2, 黄东方2, 赵瑞雪3, 周权宝3, 吕朋1,2,*, 王学刚2,*
1 江西省聚合物微纳制造与器件重点实验室(东华理工大学),南昌 330013
2 东华理工大学水资源与环境工程学院,南昌 330013
3 东华理工大学化学与材料科学学院,南昌 330013
Research Progress on the Application of Surface Treatment Technology in Hydrogen Storage Materials
LIU Quanyu1,2, PENG Cheng1,2, HUANG Dongfang2, ZHAO Ruixue3, ZHOU Quanbao3, LYU Peng1,2,*, WANG Xuegang2,*
1 Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, China
2 School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
3 School of Chemical and Materials Science, East China University of Technology, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 2943KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对储氢材料存在活化条件苛刻、吸放氢动力学性能差及电化学性能不佳等问题,本文总结了近年来国内外表面处理技术在储氢材料中的研究进展,比较讨论了化学镀表面处理、电镀表面处理、球磨表面处理、氟化表面处理、酸碱盐表面处理、冷轧表面处理和其他表面处理(表面热处理、气相沉积表面处理和磁控溅射表面处理)等对储氢材料表面结构的影响,并探讨不同表面处理方法对储氢材料的活化性能、吸放氢动力学性能、抗气体杂质毒化性能、抗粉化性能、抗氧化性能、循环稳定性及电化学性能等的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘泉宇
彭程
黄东方
赵瑞雪
周权宝
吕朋
王学刚
关键词:  储氢材料  表面处理  储氢性能  电化学性能    
Abstract: In view of the problems of harsh activation condition, poor kinetic performance and poor electrochemical performance of hydrogen storage materials, we summary the research progress of surface treatment technology in hydrogen storage materials at home and abroad in recent years. At the same time, we also compare and discuss the effects of electroless plating surface treatment, electroplating surface treatment, ball milling surface treatment, fluorinated surface treatment, acid-alkali salt surface treatment, cold rolling surface treatment and other surface treatments (surface heat treatment, vapor deposition surface treatment and magnetron sputtering surface treatment) on the surface structure of hydrogen storage materials. The effects of different surface treatment methods on the activation performance, hydrogen absorption and desorption kinetic performance, anti-gas impurity toxicity performance, anti-pulverization performance, oxidation resistance, cycle stability and electrochemical performance of hydrogen storage materials are discussed.
Key words:  hydrogen storage material    surface treatment    hydrogen storage performance    electrochemical performance
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TG139+.7  
基金资助: 国家自然科学基金(12205042);江西省自然科学基金(20202BABL214003);江西省聚合物微纳制造与器件重点实验室开放基金(PMND201902)
通讯作者:  * 吕朋,副教授,硕士研究生导师。主持和参与国家自然科学基金、江西省自然科学基金等省部级项目多项,发表SCI论文10余篇,目前主要从事绿色洁净能源、先进氢能及环境功能材料等方面的研究。lvpeng@ecut.edu.cn
王学刚,教授,博士研究生导师。主持和参与国家自然科学基金、国家科技部863计划、973计划、国际合作项目和国防科工局核能开发项目10余项,发表SCI论文40余篇,获国防技术发明二等奖1项、江西省技术发明二等奖1项和中国有色金属科技进步奖一等奖1项。xgwang@ecut.edu.cn   
作者简介:  刘泉宇,2022年6月毕业于青岛农业大学资源与环境学院,获得工学学士学位。现为东华理工大学水资源与环境工程学院硕士研究生,在吕朋副教授及王学刚教授的指导下进行研究。目前主要研究领域为钛基储氢合金。
引用本文:    
刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
LIU Quanyu, PENG Cheng, HUANG Dongfang, ZHAO Ruixue, ZHOU Quanbao, LYU Peng, WANG Xuegang. Research Progress on the Application of Surface Treatment Technology in Hydrogen Storage Materials. Materials Reports, 2024, 38(20): 23040255-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040255  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23040255
1 Xu H, Yu J R, Cao Z Q, et al. Materials Reports, 2022,36(5), 20090051(in Chinese).
徐欢, 于佳蕊, 曹中秋, 等. 材料导报, 2022, 36(5), 20090051.
2 Lee S Y, Lee J H, Kim Y H, et al. Processes, 2022, 10(2), 304.
3 Wang L, Yu X H, Yuan S S, et al. Materials Reports, 2023,37(21), 22040076(in Chinese).
王磊, 于新海, 袁帅帅, 等. 材料导报, 2023, 37(21), 22040076.
4 Zhang Y, Jia Z, Yuan Z, et al. Journal of Iron and Steel Research International, 2015, 22(9), 757.
5 Jian L I, Zhang L, Ruiyi L I, et al. Energy Storage Science and Technology, 2021, 10(5), 1835.
6 Yin Z C, Yang G, Liu H, et al. Modern Chemical Industry, 2021, 41(11), 53 (in Chinese).
殷卓成, 杨高, 刘怀, 等. 现代化工, 2021, 41(11), 53.
7 Qiu Y, Yang H, Tong L, et al. Metals, 2021, 11(7), 1101.
8 Zohuri B. Hydrogen energy, Springer Nature, Germany, 2019, pp.121.
9 Wijayanta A T, Oda T, Purnomo C W, et al. International Journal of Hydrogen Energy, 2019, 44(29), 15026.
10 Sakintuna B, Lamari-Darkrim F, Hirscher M. International Journal of Hydrogen Energy, 2007, 32(9), 1121.
11 Principi G, Agresti F, Maddalena A, et al. Energy, 2009, 34(12), 2087.
12 Prabhukhot P R, Wagh M M, Gangal A C. Advances in Energy and Power, 2016, 4(2), 11.
13 Kumar A, Muthukumar P, Sharma P, et al. Sustainable Energy Technologies and Assessments, 2022, 52, 102204.
14 Khafidz N Z A K, Yaakob Z, Lim K L, et al. International Journal of Hydrogen Energy, 2016, 41(30), 13131.
15 Liang F, Lin J, Cheng Y, et al. Science China Technological Sciences, 2018, 61, 1309.
16 Zhang Y, Li C, Yuan Z, et al. Journal of Iron and Steel Research International, 2022, 29(4), 537.
17 Liu J, Sun L, Yang J, et al. RSC Advances, 2022, 12(55), 35744.
18 Li Y, Zhang Y, Kong X, et al. International Journal of Heat and Technology, 2016, 34(2), 245.
19 Kumar S, Jain A, Ichikawa T, et al. Renewable and Sustainable Energy Reviews, 2017, 72, 791.
20 Chen W X. Chinese Journal of Power Sources, 1998(2), 86 (in Chinese).
陈卫祥. 电源技术, 1998(2), 86.
21 Guo Z Y, Shi Y, Guo H T, et al. Shanxi Science and Technology, 2019, 34(1), 129 (in Chinese).
郭子杨, 石勇, 郭昊天, 等. 山西科技, 2019, 34(1), 129.
22 Li D, Lou Y P, Du J S, et al. Materials Reports, 2015, 29(23), 92 (in Chinese).
李朵, 娄豫皖, 杜俊霖, 等. 材料导报, 2015, 29(23), 92.
23 Li Q, Gao F, Ji L Q, et al. Metallic Functional Materials, 2014, 21(4), 28 (in Chinese).
李倩, 高峰, 吉力强, 等. 金属功能材料, 2014, 21(4), 28.
24 Wan W H, Tang Y G, Lu Z G, et al. Journal of Central South University, 2007(1), 107 (in Chinese).
万伟华, 唐有根, 卢周广, 等. 中南大学学报, 2007(1), 107.
25 Liu L F, Zhao B T, Zhang P Z, et al. China Surface Engineering, 2015, 28(3), 56 (in Chinese).
刘丽飞, 肇博涛, 张平柱, 等. 中国表面工程, 2015, 28(3), 56.
26 Wang F, Li R, Ding C, et al. International Journal of Hydrogen Energy, 2017, 42(16), 11510.
27 Wang F, Li R, Ding C, et al. International Journal of Hydrogen Energy, 2016, 41(39), 17421.
28 Guo X, Wang S, Li Z, et al. Fusion Engineering and Design, 2016, 113, 195.
29 Mustafa Anik, Isxın Akay, Selda Topcu. International Journal of Hydrogen Energy, 2009, 34(13), 5449.
30 Modibane K D, Lototskyy M, Davids M W, et al. Journal of Alloys and Compounds, 2018, 750, 523.
31 Zhao B T, Ye Y M, Liu L F, et al. China Surface Engineering, 2016, 29(2), 24 (in Chinese).
肇博涛, 叶一鸣, 刘丽飞, 等. 中国表面工程, 2016, 29(2), 24.
32 Xiang F L. Surface modification and anti-toxicity of ZrNi-based hydrogen storage alloys. Master’s Thesis, General Research Institute for Nonferrous Metals, China, 2018 (in Chinese).
向富乐. 锆镍基储氢合金的表面改性及抗毒化性能研究. 硕士学位论文, 北京有色金属研究总院, 2018.
33 Zhang T, Zhang Y, Zhang M, et al. International Journal of Hydrogen Energy, 2016, 41(33), 14778.
34 Kim Y S, Kim J G. International Journal of Hydrogen Energy, 2017, 42(44), 27428.
35 Ding N, Liu W, Sun L, et al. Intermetallics, 2020, 127, 106972.
36 Shen W, Han S, Li Y, et al. Applied Surface Science, 2012, 258(17), 6316.
37 Li W, Hao J, Mu S, et al. Applied Surface Science, 2020, 507, 144889.
38 Ding H, Han S, Liu Y, et al. International Journal of Hydrogen Energy, 2009, 34(23), 9402.
39 Wang Y, Tang W, Wang F, et al. International Journal of Hydrogen Energy, 2018, 43(6), 3244.
40 Kim J H, Yamamoto K, Yonezawa S, et al. Materials Letters, 2012, 82, 217.
41 Shan X, Payer J H, Wainright J S. Journal of Alloys and Compounds, 2006, 426(1-2), 400.
42 Yang J X. Study on the modification of AlH3 hydrogen storage material. Master’s Thesis, University of Science and Technology of China, China, 2020 (in Chinese).
杨佳鑫. AlH3储氢材料的改性研究. 硕士学位论文, 中国科学技术大学, 2020.
43 Yuan H T, Feng Y, Song H N, et al. Chemiacl Industry and Engineering Progress, 2003(5), 454 (in Chinese).
袁华堂, 冯艳, 宋赫男, 等. 化工进展, 2003(5), 454.
44 Liu X, Wu S, Cai X, et al. International Journal of Hydrogen Energy, 2023, 48(45), 17202.
45 Lee S M, Lee H, Yu J S, et al. Journal of Alloys and Compounds, 1999, 292(1-2), 258.
46 Zhang H, Bao L, Chen Y. Materials Letters, 2022, 329, 133249.
47 Zadorozhnyy M Y, Klyamkin S N, Strugova D V, et al. International Journal of Hydrogen Energy, 2016, 40(2), 273.
48 Liu W C, Sun H F, Feng D C, et al. Metallic Functional Materials, 2022, 29(5), 57 (in Chinese).
刘文超, 孙涵丰, 冯佃臣, 等. 金属功能材料, 2022, 29(5), 57.
49 Wu R, Chen Y J, Zhou L W, et al. Popular Science & Technology, 2016, 18(7), 49 (in Chinese).
吴睿, 陈用娇, 周礼玮, 等. 大众科技, 2016, 18(7), 49.
50 Gao L H. A study on modification of Mg-based alloys and hydrogenation/dehydrogenation properties of the organic liquid catalyzed by Mg-based alloys. Ph. D. Thesis, Zhejiang University, China, 2006 (in Chinese).
高林辉. 镁基储氢合金的改性及其催化有机液体吸放氢性能研究. 硕士学位论文, 浙江大学, 2006.
51 Zhang J W, Chen C P, Gao L H, et al. Journal of Chemical Industry and Engineering (China), 2004(S1), 159 (in Chinese).
张继文, 陈长聘, 高林辉, 等. 化工学报, 2004(S1), 159.
52 Zhou Y Y, Cui Y W, Li J C, et al. China Surface Engineering, 2011, 24(1), 56 (in Chinese).
周媛媛, 崔用武, 李锦春, 等. 中国表面工程, 2011, 24(1), 56.
53 Wang X L, Suda S. Journal of Alloys and Compounds, 1995, 231(1-2), 380.
54 Zhu H Y, Chen C P, Wu J, et al. Chinese Journal of Rare Metals, 1991(3), 189 (in Chinese).
朱海岩, 陈长聘, 吴军, 等. 稀有金属, 1991(3), 189.
55 Chen Y, Wen Z, Jia J H, et al. International Journal of Hydrogen Energy, 2020, 45(3), 2157.
56 Yuan H P, Jiang L J. Chinest Journal of Inorganic Chemistry, 2018, 34(12), 2271.
57 Matsuyama A, Mizutani H, Kozuka T, et al. International Journal of Hydrogen Energy, 2016, 41(23), 9908.
58 Sun K, Zhu Y F, Zhang W, et al. Journal of Materials Science & Engineering, 2011, 29(6), 898 (in Chinese).
孙凯, 朱云峰, 张伟, 等. 材料科学与工程学报, 2011, 29(6), 898.
59 Vega L E R, Leiva D R, Neto R M L, et al. International Journal of Hydrogen Energy, 2018, 43(5), 2913.
60 Huot J, Amira S, Lang J, et al. In:6th International Conference on Nanomaterials by Severe Plastic Deformation (NanoSPD6). Metz, 2014, pp.012114.
61 Lima G F, Triques M R M, Kiminami C S, et al. Journal of Alloys and Compounds, 2014, 586, S409.
62 Floriano R, Leiva D R, Melo G C, et al. International Journal of Hydrogen Energy, 2017, 42(49), 29394.
63 Oliveiraa V B, Beatricea C A G, Netoc R M L, et al. Materials Research, 2021, 24(6), e20210204.
64 Tousignant M, Huot J. Journal of Alloys and Compounds, 2014, 595, 22.
65 Amira S, Huot J. Journal of Alloys and Compounds, 2012, 520, 287.
66 Guo J H, Chen D M, Yang K, et al. Chinese Journal of Power Source, 2002(S1), 191 (in Chinese).
郭靖洪, 陈德敏, 杨柯, 等. 电源技术, 2002(S1), 191.
67 Zhou H Y, Wang F, Wang J, et al. International Journal of Hydrogen Energy, 2014, 39(27), 14887.
68 Jiang W, Lan Z, Wei W L, et al. International Journal of Hydrogen Energy, 2010, 35(20), 11016.
69 Davids M W, Lototskyy M, Nechaev A, et al. International Journal of Hydrogen Energy, 2011, 36(16), 9743.
70 Hwang S W, Rather S, Soo C S, et al. Journal of Alloys and Compounds, 2009, 480(2), L20.
71 Chi X, Song C H, Bao J F, et al. Thermal Spray Technology, 2020, 12(2), 17 (in Chinese).
迟迅, 宋长虹, 鲍君峰, 等. 热喷涂技术, 2020, 12(2), 17.
72 Zhang H, Fu L, Qi J, et al. Journal of Power Sources, 2019, 417, 76.
73 Zhang H, Fu L, Xuan W, et al. Journal of Power Sources, 2018, 385, 27.
74 Zhang H, Bao L, Qi J, et al. Renewable Energy, 2020, 157, 1053.
75 Zhang M, Hu R, Zhang T, et al. Vacuum, 2014, 109, 191.
76 Li G H, Huang H X, Wang X Y, et al. Fine Chemicals, 2016, 33(8), 867 (in Chinese).
李国辉, 黄红霞, 王新颖, 等. 精细化工, 2016, 33(8), 867.
77 Li X G, Zheng J, Liu Y, et al. Qing yu qing neng, China Machine Press, China, 2012, pp.189.
李星国, 郑捷, 刘洋, 等. 氢与氢能, 机械工业出版社, 2012, pp.189.
[1] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[2] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[3] 魏彦平, 魏凤春, 朱青松, 刘琦, 郭子涵. 金属-聚合物表面微纳形态的构筑与研究[J]. 材料导报, 2024, 38(19): 23090143-9.
[4] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[5] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[6] 肖雯心, 王叶, 马凯, 代朝能, 裴三略, 王丹芊, 王敬丰. 镁合金表面化学转化涂层研究进展[J]. 材料导报, 2024, 38(12): 23010121-12.
[7] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[8] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[9] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[10] 邓安强, 罗永春, 袁远, 康晓燕, 周健飞, 谢云丁, 沈秉金, 王悦. 超点阵结构储氢合金研究进展[J]. 材料导报, 2023, 37(17): 22040141-9.
[11] 刘宏亮, 王月莹, 沙剑春, 杨炳林, 贾志明, 王鑫, 高思睿, 何立子. 固溶温度对Al-Mg-Sn-Ga-Bi合金显微组织及电化学性能的影响[J]. 材料导报, 2023, 37(14): 21120010-6.
[12] 秦珩, 李凯霖, 戴兴健, 周欢, 张育新. Co3O4@MnSiO3@硅藻土三元复合材料的制备及赝电容性能提升机理[J]. 材料导报, 2023, 37(11): 21110025-6.
[13] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[14] 徐英卓, 王秀凯, 常麟晖, 陈步明, 黄惠, 何亚鹏, 郭忠诚. 热处理对大变形量Zn-1.65Cu-0.15Ti合金的组织和性能的影响[J]. 材料导报, 2022, 36(23): 21030294-7.
[15] 吴建飞, 袁红梅, 夏林敏, 赵红艳, 林金国, 李吉庆. 低温等离子体改性技术制备功能材料的研究进展[J]. 材料导报, 2022, 36(21): 20100119-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed