Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22040141-9    https://doi.org/10.11896/cldb.22040141
  金属与金属基复合材料 |
超点阵结构储氢合金研究进展
邓安强1,2,3, 罗永春1,2,*, 袁远1, 康晓燕1, 周健飞1, 谢云丁1, 沈秉金1, 王悦1
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学有色金属先进加工与再利用省部共建国家重点实验室,兰州 730050
3 宁夏大学机械工程学院,银川 750021
Research Progress of Super Lattice Hydrogen Storage Alloys
DENG Anqiang1,2,3, LUO Yongchun1,2,*, YUAN Yuan1, KANG Xiaoyan1, ZHOU Jianfei1, XIE Yunding1, SHEN Bingjin1, WANG Yue1
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
3 School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China
下载:  全 文 ( PDF ) ( 11016KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超点阵结构储氢合金是近20年来储氢材料领域的研究热点。本文详细综述了常见超点阵晶体结构的演变规律,超点阵结构由Laves结构单元和CaCu5结构单元在c轴堆垛而成,该结构均可由CaCu5结构经过元素替代和平移而获得,有六方2H和菱方3R两种晶体结构类型。文章综述了典型超点阵结构储氢合金的研究进展、超点阵结构合金关键元素占位和亚结构单元体积调控机制。合金电极电化学循环稳定性与电化学循环过程中合金结构演变和相应的表面腐蚀行为等方面有关,文章同时综述了改善超点阵结构合金储氢行为和电化学性能的途径,并对未来超点阵结构储氢合金的发展进行了展望。对超点阵结构储氢合金成分-结构-性能-服役性能的深层次理解有助于开发高性能超点阵结构合金电极材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓安强
罗永春
袁远
康晓燕
周健飞
谢云丁
沈秉金
王悦
关键词:  超点阵结构  储氢合金  储氢行为  电化学性能    
Abstract: Superlattice structure alloys have been a hot topic in the field of hydrogen storage materials in recent 20 years. In this paper, the evolution law of common superlattice crystal structures is reviewed in detail. The superlattice alloy is composed of Laves structure and CaCu5 structure stacked on the c axis. The structure can be obtained by element substitution and translation of CaCu5 structure. There are two crystal structure types:hexagonal 2H and rhombohedral 3R crystal structures. The research progress of typical superlattice structure hydrogen storage alloys, key element occupancy and volume regulation mechanisms of sub-unit in superlattice alloys are reviewed. The electrochemical cycling performance of alloy electrodes is related to the evolution of alloy structure and the corresponding surface corrosion behavior during electrochemical cycling. The approaches to improve the hydrogen storage behavior and electrochemical performance of superlattice alloys are reviewed at the same time, and the future development of superlattice structure hydrogen storage alloys is prospected. This paper is expected to facilitate deep understanding of the composition-structure-property-service performance of superlattice hydrogen storage alloys, and provide reference for the development of high-performance superlattice alloys electrode material.
Key words:  superlattice structure    hydrogen storage alloy    hydrogen storage behavior    electrochemical property
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TG139.7  
基金资助: 国家自然科学基金(51761026);宁夏自然科学基金(2022AAC03048;2019AAC03003);兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室开放基金(SKLAB02019004)
通讯作者:  *罗永春,兰州理工大学材料科学与工程学院教授、博士研究生导师,研究方向为储氢材料、材料电化学。luoyc@lut.edu.cn   
作者简介:  邓安强,宁夏大学副教授,工学博士,研究方向为稀土储氢材料。
引用本文:    
邓安强, 罗永春, 袁远, 康晓燕, 周健飞, 谢云丁, 沈秉金, 王悦. 超点阵结构储氢合金研究进展[J]. 材料导报, 2023, 37(17): 22040141-9.
DENG Anqiang, LUO Yongchun, YUAN Yuan, KANG Xiaoyan, ZHOU Jianfei, XIE Yunding, SHEN Bingjin, WANG Yue. Research Progress of Super Lattice Hydrogen Storage Alloys. Materials Reports, 2023, 37(17): 22040141-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040141  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22040141
1 Chen P, He T, Guo J P, et al. Hydride:Hydrogen and energy carrier, Science Press, China, 2021(in Chinese).
陈萍, 何腾, 郭建平, 等. 氢化物:载氢载能体, 科学出版社, 2021.
2 Kohno T, Yoshida H, Kawashima F, et al. Journal of Alloys and Compounds, 2000, 311, L5.
3 Zhu M. Introduction to advanced hydrogen storage materials, Science Press, China, 2015(in Chinese).
朱敏. 先进储氢材料导论, 科学出版社, 2015.
4 Kadir K, Sakai T, Uehara I. Journal of Alloys and Compounds, 1997, 257, 115.
5 Chu H L, Qiu S J, Sun L X, et al. Electrochimica Acta, 2007, 52, 6700.
6 Liu Y F, Pan H G, Gao M X, et al. Journal of Materials Chemistry, 2011, 21, 4743.
7 Li Y M, Liu Z C, Zhang G F, et al. Journal of Power Sources, 2019, 441, 126667.
8 Crivello J C, Zhang J X, Latroche M. The Journal of Physical Chemistry C, 2011, 115, 25470.
9 Wensch G W, Whyte D D, Cramer E M, et al. Technical Report:The Nickel-Plutonium System, DOI:10.2172/4259708.
10 Cromer D T, Olsen C E. Acta Crystallographica, 1959, 12, 689.
11 Liu Y R, Yuan H P, Guo M, et al. International Journal of Hydrogen Energy, 2019, 44, 22064.
12 Cromer D T, Larson A C. Acta Crystallographica, 1959, 12, 855.
13 Zhang F L, Luo Y C, Chen J P, et al. Journal of Power Sources, 2005, 150, 247.
14 Van Vucht J H N. Journal of the Less Common Metals, 1966, 10, 146.
15 Virkar A V, Raman A. Journal of the Less Common Metals, 1969, 18, 59.
16 Charbonnier V, Zhang J X, Monnier J, et al. The Journal of Physical Chemistry C, 2015, 119, 12218.
17 Zhao S Q, Wang H, Hu R Z, et al. Journal of Alloys and Compounds, 2021, 868, 159254.
18 Buschow K H J, Van Der Goot A S. Journal of the Less Common Metals, 1970, 22, 419.
19 Paul-Boncour V, Crivello J C, Madern N, et al. Journal of Physics-condensed Matter, 2020, 32, 415804.
20 Khan Y. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1974, 30, 1533.
21 Khan Y. Physica Status Solidi (a), 1974, 23, 425.
22 Parthé E, Lemaire R. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1975, 31, 1879.
23 Dunlap B D, Viccaro P J, Shenoy G K. Journal of the Less Common Metals, 1980, 74, 75.
24 Oesterreicher H, Clinton J, Bittner H. Materials Research Bulletin, 1976, 11, 1241.
25 Zhang Q A, Chen Z L, Li Y T, et al. The Journal of Physical Chemistry C, 2015, 119, 4719.
26 Denys R V, Riabov A B, Yartys V A, et al. Journal of Solid State Che-mistry, 2008, 181, 812.
27 Guzik M N, Hauback B C, Yvon K. Journal of Solid State Chemistry, 2012, 186, 9.
28 Gal L, Charbonnier V, Zhang J X, et al. International Journal of Hydrogen Energy, 2015, 40, 17017.
29 Gao Z J, Kang L, Luo Y C. New Journal of Chemistry, 2013, 37, 1105.
30 Li Y, Han D, Han S, et al. International Journal of Hydrogen Energy, 2009, 34, 1399.
31 Liu J J, Chen X Y, Xu J, et al. Chemical Engineering Journal, 2021, 418, 129395.
32 Liu J J, Han S M, Li Y, et al. Journal of Alloys and Compounds, 2013, 552, 119.
33 Pan H G, Liu Y F, Gao M X, et al. Journal of the Electrochemical Society, 2003, 150, A565.
34 Liu J J, Zhu S, Chen X Y, et al. Journal of Materials Science & Technology, 2021, 80, 128.
35 Gao J, Yan X L, Zhao Z Y, et al. Journal of Power Sources, 2012, 209, 257.
36 Zhang Y H, Hou Z H, Li B W, et al. Journal of Alloys and Compounds, 2012, 537, 175.
37 Yuan H P, Zou Z Y, Li Z N, et al. International Journal of Hydrogen Energy, 2013, 38, 7881.
38 Zhao X J, Li Q, Chou K, et al. Journal of Alloys and Compounds, 2009, 473, 428.
39 Crivello J C, Gupta M, Latroche M. Journal of Alloys and Compounds, 2015, 645, S5.
40 Yang S Q, Liu H P, Han S M, et al. Applied Surface Science, 2013, 271, 210.
41 Liu J J, Li Y, Han D, et al. Journal of Power Sources, 2015, 300, 77.
42 Liu Y F, Pan H G, Gao M X, et al. Journal of the Electrochemical Society, 2005, 152, A1089.
43 Qiu S J, Huang J L, Shen F H, et al. International Journal of Hydrogen Energy, 2016, 41, 16142.
44 Yasuoka S, Magari Y, Murata T, et al. Journal of Power Sources, 2006, 156, 662.
45 Baddour-Hadjean R, Meyer L, Pereira-Ramos J P, et al. Electrochimica Acta, 2001, 46, 2385.
46 Kadir K, Kuriyama N, Sakai T, et al. Journal of Alloys and Compounds, 1999, 284, 145.
47 Zhang J, Fang F, Zheng S Y, et al. Journal of Power Sources, 2007, 172, 446.
48 Zhang J, Zhou G Y, Chen G R, et al. Acta Materialia, 2008, 56, 5388.
49 Yan H Z, Xiong W, Wang L, et al. International Journal of Hydrogen Energy, 2017, 42, 2257.
50 Wang L, Zhang X, Zhou S J, et al. International Journal of Hydrogen Energy, 2020, 45, 16677.
51 Shi Y, Leng H Y, Wei L, et al. Electrochimica Acta, 2019, 296, 18.
52 Zhao S Q, Wang H, Yang L C, et al. Journal of Power Sources, 2022, 524, 231067.
53 Li S C, Yin W Q, Qiao Y Q. Journal of Physics and Chemistry of Solids, 2022, 160. 110347.
54 Zhou S J, Zhang X, Wang L, et al. International Journal of Hydrogen Energy, 2021, 46, 3414.
55 Yang H, Liang F, Yan H Z, et al. Journal of Materials Science, 2021, 56, 8159.
56 Zhu J, Zhang J, Fang F, et al. Rare Metal Materials and Engineering, 2008, 37(8), 1377(in Chinese).
朱健, 张晶, 方方, 等. 稀有金属材料与工程, 2008, 37(8), 1377.
57 Hayakawa H, Akiba E, Gotoh M, et al. Materials Transactions, 2005, 46, 1393.
58 Denys R V, Yartys V A, Webb C J. Inorganic Chemistry, 2012, 51, 4231.
59 Denys R V, Riabov B, Yartys V A, et al. Journal of Alloys and Compounds, 2007, 446-447, 166.
60 Yasuoka S, Ishida J, Kai T, et al. International Journal of Hydrogen Energy, 2017, 42, 11574.
61 Deng A Q, Luo Y C, Xia Y H, et al. Chemical Journal of Chinese Universities, 2020, 41(1), 145(in Chinese).
邓安强, 罗永春, 夏元华, 等. 高等学校化学学报, 2020, 41(1), 145.
62 Iwase K, Mori K, Tashiro S, et al. Inorganic Chemistry, 2015, 54, 8650.
63 Fang F, Chen Z L, Wu D Y, et al. Journal of Power Sources, 2019, 427, 145.
64 Zhang J X, Charbonnier V, Madern N, et al. Journal of Alloys and Compounds, 2021, 852, 157008.
65 Liu J J, Monnier J, Latroche M, et al. Journal of Alloys and Compounds, 2022, 907, 164448.
66 Tan C, Ouyang L Z, Wang H, et al. Journal of Alloys and Compounds, 2020, 849, 156641.
67 Gao Z J, Luo Y C, Li R F, et al. Journal of Power Sources, 2013, 241, 509.
68 Dong X P, Lü F X, Zhang Y H, et al. Materials Chemistry and Physics, 2008, 108, 251.
69 Zhang F L, Luo Y C, Wang D H, et al. Journal of Alloys and Compounds, 2007, 439, 181.
70 Liao B, Lei Y Q, Chen L X, et al. Journal of Power Sources, 2004, 129, 358.
71 Nazer N S, Denys R V, Yartys V A, et al. Journal of Power Sources, 2017, 343, 502.
72 Zhao L Q, Deng A Q, Yang Y, et al. Journal of Rare Earths, 2020, 40(2), 250(in Chinese).
赵刘强, 邓安强, 杨洋, 等. 中国稀土学报, 2022, 40(2), 250.
73 Volodin A A, Wan C B, Denys R V, et al. International Journal of Hydrogen Energy, 2016, 41, 9954.
74 Zhang L, Cao S B, Li Y, et al. Journal of the Electrochemical Society, 2015, 162, A2218.
75 Zhang L, Wang W F, Rodríguez-Pérez I A, et al. Journal of Power Sources, 2018, 401, 102.
76 Dong X P, Yang L Y, Li X T, et al. Journal of Rare Earths, 2011, 29, 143.
77 Liu Y F, Pan H G, Gao M X, et al. International Journal of Hydrogen Energy, 2008, 33, 124.
78 Li F, Young K, Ouchi T, et al. Journal of Alloys and Compounds, 2009, 471, 371.
79 Crivello J C, Madern N, Zhang J X, et al. The Journal of Physical Che-mistry C, 2019, 123, 23334.
80 Li Y M, Liu Z C, Zhang G F, et al. Journal of Rare Earths, 2019, 37, 1305.
81 Ding N, Liu D Y, Liu W Q, et al. Journal of Physics and Chemistry of Solids, 2022, 161, 110402.
82 Li Y, Tao Y, Ke D D, et al. Applied Surface Science, 2015, 357, 1714.
83 Li Y, Cheng L N, Miao W K, et al. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 391.
84 Wu R, Yuan H P, Liu Y R, et al. International Journal of Hydrogen Energy, 2021, 46, 28191.
85 Zhang H W, Fu L, Xuan W D, et al. Renewable Energy, 2020, 145, 1572.
86 Zhang H W, Bao L, Qi J B, et al. Renewable Energy, 2020, 157, 1053.
87 Wang Y B, Tang W K, Wang F, et al. International Journal of Hydrogen Energy, 2018, 43, 3244.
[1] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[2] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[3] 刘宏亮, 王月莹, 沙剑春, 杨炳林, 贾志明, 王鑫, 高思睿, 何立子. 固溶温度对Al-Mg-Sn-Ga-Bi合金显微组织及电化学性能的影响[J]. 材料导报, 2023, 37(14): 21120010-6.
[4] 秦珩, 李凯霖, 戴兴健, 周欢, 张育新. Co3O4@MnSiO3@硅藻土三元复合材料的制备及赝电容性能提升机理[J]. 材料导报, 2023, 37(11): 21110025-6.
[5] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[6] 徐英卓, 王秀凯, 常麟晖, 陈步明, 黄惠, 何亚鹏, 郭忠诚. 热处理对大变形量Zn-1.65Cu-0.15Ti合金的组织和性能的影响[J]. 材料导报, 2022, 36(23): 21030294-7.
[7] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[8] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[9] 纪铭悦, 田晓, 刘昕瑀, 田璐, 杨艳春, 塔娜. 新型La-Mg-Ni系储氢合金相结构及其制备工艺研究进展[J]. 材料导报, 2022, 36(15): 21030222-10.
[10] 牛晓勤, 康小雅, 马应霞, 王嘉伟, 陈新权, 田虎, 陈玉红, 冉奋. 新型球状Ni/Co-MOFs电极材料的构筑及电化学性能研究[J]. 材料导报, 2022, 36(14): 21050021-7.
[11] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[12] 魏满想, 高思睿, 刘宏亮, 王鑫, 付海朋, 何立子. Sn对Al-Mg-Ga-Sn阳极合金电化学性能的影响[J]. 材料导报, 2021, 35(Z1): 311-314.
[13] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[14] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[15] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed