Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 20080292-6    https://doi.org/10.11896/cldb.20080292
  无机非金属及其复合材料 |
基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展
刘小伟, 孙宁, 刘湘林, 金芳军
长春理工大学物理学院,长春 130022
Progress in LnBaCo2O5+δ-based Double Perovskite Cathode Materials for SOFC
LIU Xiaowei, SUN Ning, LIU Xianglin, JIN Fangjun
School of Physics, Changchun University of Science and Technology, Changchun 130022, China
下载:  全 文 ( PDF ) ( 1720KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着人类社会的发展,能源与环境问题日益突出,固体氧化物燃料电池(SOFC)作为一种高效环保的发电装置一直以来备受社会各界的广泛关注和重视。阴极作为SOFC的重要组成部分,其性能的优劣直接影响电池的工作效率。近年来,低温化已成为SOFC的发展趋势,具有混合离子-电子导电(MIECs)性质的电极材料因在中低温区(500~800 ℃)具备良好的催化性能而被广泛研究。其中,以钙钛矿为基本单元且有序化的层状结构氧化物LnBaCo2O5+δ作为SOFC阴极,在中低温区表现出优异的电化学性能,受到了国内外众多课题组的关注。本文主要综述了LnBaCo2O5+δ基双钙钛矿型阴极材料过去10年间的研究进展,并总结了不同修饰手段对LnBaCo2O5+δ性能的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘小伟
孙宁
刘湘林
金芳军
关键词:  固体氧化物燃料电池  双钙钛矿  阴极  电化学性能    
Abstract: Energy and environmental problems become increasingly prominent with the development of human society. Solid oxide fuel cell (SOFC), as an efficient and environmentally friendly power generation device, has received wide attention from all walks of life. The performance of the cathode as an essential part of SOFC directly affects the efficiency of the battery. In recent years, the low temperature has become the development trend of SOFC. SOFC electrode materials with numerous mixed ionic and electronic conductors (MIECs) have provoked much interest because of their excellent catalytic performance in intermediate-temperature and low-temperature regions (500—800 ℃). Among them, layered LnBaCo2O5+δ perovskites are used as SOFC cathode, due to their excellent electrochemical properties in this temperature region, have been intensively investigated worldwide in recent years. This article focuses on the recent progress of the most actively studied family of layered LnBaCo2O5+δ perovskites in the last decade, and summarizes the influence of different doping methods on the properties of LnBaCo2O5+δ.
Key words:  solid oxide fuel cell (SOFC)    double perovskite    cathode    electrochemical performance
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  TB34  
  TM911.4  
基金资助: 国家自然科学基金(21703017);吉林省科技攻关项目(20200201060JC)
通讯作者:  jinfj@cust.edu.cn   
作者简介:  刘小伟,2019年6月在龙岩学院获得学士学位。从2019年9月起,为长春理工大学理学院硕士研究生。在金芳军导师的指导下进行研究,目前主要从事固体氧化物燃料电池研究。
金芳军,长春理工大学讲师,硕士研究生导师。2010年7月本科毕业于临沂大学物理系,2015年6月在吉林大学物理学院凝聚态物理专业取得博士学位。主要从事高温电化学能源材料与器件、光电功能材料领域方面的研究工作,主要研究方向为固体氧化物燃料电池/电解池、高温电化学合成。近年来,在燃料电池领域发表SCI论文30余篇。
引用本文:    
刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
LIU Xiaowei, SUN Ning, LIU Xianglin, JIN Fangjun. Progress in LnBaCo2O5+δ-based Double Perovskite Cathode Materials for SOFC. Materials Reports, 2022, 36(8): 20080292-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080292  或          http://www.mater-rep.com/CN/Y2022/V36/I8/20080292
1 Steele B C H, Heinzel A. Nature,2001,414(6861),345.
2 Laguna-Bercero M A. Journal of Power Sources,2012,203,4.
3 Demirdoven N, Deutch J. Science,2004,305(5686),974.
4 Wachsman E D, Lee K T. Science,2011,334,935.
5 Zhang Y, Knibbe R, Sunarso J, et al. Advanced Materials,2017,29,1700132.
6 Orera A, Slater P R. Chemistry of Materials,2010,22,675.
7 Zhang W R, Zhang Z H, Gao L G, et al.Progress in Chemistry,2016,28(6),961(in Chinese).
张文锐,张智慧,高立国,等.化学进展,2016,28(6),961.
8 Zhou Q J, Wang F, Shen Y, et al. Journal of Power Sources,2010,195(8),2174.
9 Cox-Galhotra R A, McIntosh S. Solid State Ionics,2012,228,14.
10 Zhang K, Ge L, Ran R,et al. Acta Materialia,2008,56(17),4876.
11 Tarancón A, Peña-Martínez J, Marrero-López D, et al. Solid State Ionics,2008,40(31),2372.
12 Lee K T, Manthiram A. Journal of the Electrochemical Society,2005,152(1),A197.
13 Chavez E, Mueller M, Mogni L, et al. Journal of Physics: Conference Series,2009,167,12043.
14 Kim J H, Manthiram A. Journal of the Electrochemical Society,2008,155(4),B385
15 Lee K T, Manthiram A. Journal of the Electrochemical Society,2006,153(4),A794.
16 Shannon R D J. Acta Crystallographica Section A, Foundations of Crystallography,1976,32,751.
17 Tarancón A, Morata A, Dezanneau G, et al.Journal of Power Sources,2007,174,255.
18 Tarancón A, Skinner S J, Chater R J, et al. Journal of Materials Chemistry,2007,17,3175.
19 Kim G, Wang S, Jacobson A J, et al. Applied Physics Letters,2006,88(2),24103.
20 Taskin A A, Lavrov A N, Ando Y. Applied Physics Letters,2005,86(9),91910.
21 Jun A, Kim J, Shin J,et al. International Journal of Hydrogen Energy,2012,37(23),18381.
22 Meng F C, Xia T, Wang J P,et al. International Journal of Hydrogen Energy,2014,39(9),4531.
23 Yoo S, Choi S, Kim J,et al . Electrochimica Acta,2013,100,44.
24 Yao C G, Zhang H X, Liu X J, et al. Journal of Solid State Chemistry,2018,265,72.
25 Lü S Q, Long G H, Meng X W, et al. International Journal of Hydrogen Energy,2012,37(7),5914.
26 Zhang X L, Jin M F, Sheng J M. Journal of Alloys and Compounds,2010,496(1-2),241.
27 Kim J H, Prado F, Manthiram A, et al. Journal of the Electrochemical Society,2008,155(10),B1023.
28 Liu J, Jin F, Yang X, et al. Ceramics International,2020,46(18),28332.
29 Motin S M, Raveau B, Caignaert V. Journal of Magnetism and Magnetic Materials,2008,32(21),2676.
30 Fu D W, Jin F J, He T M. Journal of Power Sources,2016,313,134.
31 Du Z H, Yan C L, Zhao H L, et al. Journal of Materials Chemistry A,2017,48,25641.
32 Xiang W B, Wang J P, Li S L, et al. Journal of Alloys and Compounds,2019,801,220.
33 Yoo S, Jun A, Ju Y,et al. Angewandte Chemie International Edition,2014,53(48),13064.
34 Lim C, Sengodan S, Jeong D, et al. International Journal of Hydrogen Energy,2019,44(2),1088.
35 Zheng Y F, Zhang Y L, Yu F,et al. Journal of Alloys and Compounds,2017,696,964.
36 Qu L N, Liu Y, Mo R W. Guizhou Chemical Industry,2009,34(2),4(in Chinese).
曲丽娜,刘毅,莫润伟.贵州化工,2009,34(2),4.
37 Xia W, Liu X, Jin F, et al. Electrochimica Acta,2020,364,137274.
38 Yao C G, Zhang H X, Liu X J, et al. Ceramics International,2018,44(11),12048.
39 Meng F C, Xia T, Wang J P,et al. Journal of Power Sources,2015,293,741.
40 Donazzi A, Peloseto R, Cordaro G, et al. Electrochimica Acta,2015,182,573.
41 Pang S L, Wang W Z, Chen T, et al. International Journal of Hydrogen Energy,2016,41(31),13705.
42 Li S L, Xia T, Li Q,et al. International Journal of Hydrogen Energy,2017,42(38),24412.
43 Kim Y N, Kim J H, Manthiram A. Journal of Power Sources,2010,195(19),6411.
44 Zou J, Park J, Kwak B,et al. Solid State Ionics,2012,206,112.
45 Zhou W L.Preparation and performance of PrBaCoCuO5+δ-CuO composite cathode for medium temperature solid oxide fuel cell. Master's Thesis, Dalian University of Technology, China,2016(in Chinese).
周文龙.中温固体氧化物燃料电池PrBaCoCuO5+δ-CuO复合阴极的制备与性能研究. 硕士学位论文,大连理工大学,2016.
46 Kim Y N, Manthiram A. Journal of the Electrochemical Society,2011,158(3),B276.
47 Du Z H, Li K Y, Zhou H L. Journal of the Chinese Ceramic Society,2020,48(2),187(in Chinese).
杜志鸿,李科云,赵海雷.硅酸盐学报,2020,48(2),187.
48 He Z P. China Ceramic Industry,2015,22(6),15(in Chinese).
何志平.中国陶瓷工业,2015,22(6),15.
49 Zhang Y J, Yu B, Lyu S Q, et al. Electrochimica Acta,2014,134,107.
50 Liu J C, Jin F J, Yang X, et al. Electrochimica Acta, 2018, 297, 344.
51 Guo W N, Guo R S, Liu L, et al. International Journal of Hydrogen Energy,2015,40(36),12457.
52 Che X L, Shen Y, Li H, et al. Journal of Power Sources,2013,222,288.
53 Wei B, Lü Z, Jia D C, et al. International Journal of Hydrogen Energy,2010,35(8),3775.
54 Olszewska A, Du Z H, S' wierczek K, et al. The Journal of Physical Che-mistry A,2018,6(27),13271.
55 Huang X B, Feng J, Abdellatif Hassan R S, et al . International Journal of Hydrogen Energy,2018,43(18),8962.
56 Olszewska A, Zhang Y, Du Z H,et al. International Journal of Hydrogen Energy,2019,44(50),27587.
57 Jo S H, Muralidharan P, Kim D K.Electrochemistry Communications,2009,11(11),2085.
58 Jin F J, Shen Y, Wang R,et al. Journal of Power Sources,2013,234,244.
59 Jin F J, Li L, He T M. Journal of Power Sources,2015,273,591.
60 Jin F J, Li J H, Wang Y, et al. Ceramics International,2018,44(18),22489.
61 Sun C Z, Kong Y, Shao L,et al. ACS Sustainable Chemistry & Enginee-ring,2019,7(13),11603.
62 Gao Y. Shandong Chemical Industry,2020,49(4),53(in Chinese).
高原.山东化工,2020,49(4),53.
63 Zhang L K, Li S L, Xia T, et al. International Journal of Hydrogen Energy,2018,43(7),3761.
64 Xu J S, Cai H D, Hao G D,et al. Journal of Alloys and Compounds,2020,842,155600.
65 Sun C Z, Kong Y, Shao L,et al. Journal of Power Sources,2020,459,228017.
66 Choi S, Yoo S, Kim J, et al. Scientific Reports,2013,3,2426.
67 Wang B, Long G H, Ji Y,et al. Journal of Alloys and Compounds,2014,606,92.
68 Jin F, Liu X, Chu X, et al. Journal of Materials Science,2021,56,1147.
69 Yu L H, Chen Y H, Gu Q W,et al. Journal of Rare Earths,2015,33(5),519.
70 Wang W Z, Pang S L, Su Y J, et al. Journal of the European Ceramic Society,2017,37(4),1557.
71 Pang S L, Su Y J, Yang G M, et al. Ceramics International,2018,44(17),21902.
72 Liu L, Guo R S, Wang S S, et al. Ceramics International,2014,40(10),16393.
73 Jun A, Lim T, Shin J,et al. International Journal of Hydrogen Energy,2014,39(35),20791.
74 Kim J, Choi S, Park S,et al. Electrochimica Acta,2013,112,712.
75 Lyu S Q, Yu B, Meng X W, et al. Ceramics International,2014,40(9),14919.
76 Tian Y F, Liu Y, Wang W J, et al. Journal of Energy Chemistry,2020,43,108.
77 Kuroda C, Zheng K, S' wiercaek K. International Journal of Hydrogen Energy,2013,38(2),1027.
78 Pang S L, Yang G M, Xu J, et al. Ceramics International,2020,46(3),3861.
79 Li X G, Li S B, An S L, et al. Chemical Engineering,2019,47(12),22(in Chinese).
李向国,李松波,安胜利,等.化学工程,2019,47(12),22.
80 Cordaro G, Donazzi A, Pelosato R, et al.Journal of the Electrochemical Society,2020,167(2),24502.
81 Lu F F, Xia T, Li Q,et al. Journal of Power Sources,2019,417,42.
[1] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[2] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[3] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[4] 魏满想, 高思睿, 刘宏亮, 王鑫, 付海朋, 何立子. Sn对Al-Mg-Ga-Sn阳极合金电化学性能的影响[J]. 材料导报, 2021, 35(Z1): 311-314.
[5] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[6] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[7] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[8] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[9] 陈浩伟, 余先纯, 张传艳, 李銮玉, 孙德林, 郝晓峰. 木质素基模板炭的制备及电化学性能[J]. 材料导报, 2021, 35(24): 24164-24171.
[10] 唐琴, 周大利, 陈先勇. 清江河虾头胸甲基富氮/氧分级多孔叠炭片的制备及电化学性能[J]. 材料导报, 2021, 35(22): 22016-22021.
[11] 于濂清, 杨钱龙, 朱海丰, 段丽杰, 赵兴雨, 王艳坤. 氢还原氢氟酸刻蚀的TiO2纳米薄膜光电化学性能[J]. 材料导报, 2021, 35(20): 20001-20004.
[12] 鲍艳, 丁颖, 唐培, 康巧玲. 水性醇酸树脂/中空TiO2微球复合涂层的性能[J]. 材料导报, 2021, 35(18): 18200-18204.
[13] 魏安柯, 王磊, 王祎. 金属-有机骨架(MOFs)用于锂硫电池硫正极材料改性的研究进展[J]. 材料导报, 2021, 35(13): 13052-13057, 13066.
[14] 周建峰, 翟鑫华, 张盼盼, 何亚鹏, 董劲, 黄惠, 郭忠诚. 富锂锰基正极材料结构优化及晶面调控研究进展[J]. 材料导报, 2021, 35(11): 11057-11065.
[15] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed