Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18200-18204    https://doi.org/10.11896/cldb.20040157
  高分子与聚合物基复合材料 |
水性醇酸树脂/中空TiO2微球复合涂层的性能
鲍艳1,2, 丁颖1,2, 唐培1,2, 康巧玲1
1 陕西科技大学轻工科学与工程学院,西安 710021
2 轻化工程国家级实验教学示范中心(陕西科技大学),西安 710021
Properties of Water-borne Alkyd Resin/Hollow TiO2 Microsphere Composite Coating
BAO Yan1,2, DING Ying1,2, TANG Pei1,2, KANG Qiaoling1
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
2 National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 3701KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以豆油酸、三羟甲基丙烷、邻苯二甲酸酐和偏苯三酸酐为原料制备水性醇酸树脂,通过物理共混法将中空TiO2微球引入水性醇酸树脂中,研究中空TiO2微球粒径对水性醇酸树脂涂层水接触角、耐盐水性、电化学性能、附着力及铅笔硬度的影响。结果表明:中空TiO2微球粒径对水性醇酸树脂涂层的性能具有重要影响。当中空TiO2微球粒径为200 nm时,所制备的水性醇酸树脂/中空TiO2微球复合涂层的水接触角为106°,耐盐水性能达120 h以上,电化学阻抗较纯水性醇酸树脂涂层提高近两个数量级,具有优异的防腐性能,且复合涂层附着力为0级,铅笔硬度可达5H。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲍艳
丁颖
唐培
康巧玲
关键词:  水性醇酸树脂  中空TiO2微球  电化学性能  耐盐水性能    
Abstract: Water-borne alkyd resin was prepared using soybean oleic acid, trimethyl-propane, phthalic anhydride and trimellitic anhydride as raw mate-rials. Hollow TiO2 microspheres with different particle sizes were introduced into water-borne alkyd resin by physical blending method to obtain water-borne alkyd resin/hollow TiO2 microspheres composite coating. The effects of particle size of hollow TiO2 microspheres on water contact angle, salt water resistance, electrochemical properties, adhesion and pencil hardness of water-borne alkyd resin coating were investigated. The results showed that the particle size of hollow TiO2 microspheres was played a vital role for the properties of water-borne alkyd resin coa-ting. When the particle size of hollow TiO2 microspheres was 200 nm, the water contact angle of the composite coating reached 106°, and its salt water resistance reached more than 120 h. Compared with the coating of water-borne alkyd resin, the electrochemical impedance of the composite coating was improved two orders, which exhibited prominent anti-corrosion performance. Moreover, the adhesion and pencil hardness of the composite coating was grade 0 and 5H, respectively.
Key words:  water-borne alkyd resin    hollow TiO2 microspheres    electrochemical property    salt water resistance property
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TQ323  
基金资助: 国家自然科学基金(21878181);陕西省重点研发计划(2018ZDXM-GY-118)
作者简介:  鲍艳,陕西科技大学轻工科学与工程学院教授,为教育部新世纪优秀人才支持计划入选者,获全国五一巾帼奖状、全国工人先锋号、陕西省“高层次人才特殊支持计划”青年拔尖人才、陕西省中青年科技创新领军人才、陕西省青年科技奖、陕西省青年科技新星、陕西青年五四奖章提名奖、陕西科技大学优秀教师等荣誉称号。主要从事绿色皮革化学品的合成及与胶原纤维的作用、有机/无机纳米复合功能化学品的研究。
引用本文:    
鲍艳, 丁颖, 唐培, 康巧玲. 水性醇酸树脂/中空TiO2微球复合涂层的性能[J]. 材料导报, 2021, 35(18): 18200-18204.
BAO Yan, DING Ying, TANG Pei, KANG Qiaoling. Properties of Water-borne Alkyd Resin/Hollow TiO2 Microsphere Composite Coating. Materials Reports, 2021, 35(18): 18200-18204.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040157  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18200
1 Li C L, Theo V, Bart R, et al.Polymer International, 2019, 806(14), 110.
2 Amo B D, Romagnoli R, Vetere V F, et al.Corrosion Reviews, 2011, 14(1-2), 121.
3 Christel P, Jesus F O, Maxime R, et al.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536, 114.
4 Murillo E A. Journal of Applied Polymer Science, 2020, 137, 209.
5 Li C, Veldhuis T, Reuvers B, et al.Polymer International, 2020, 256(56), 968.
6 Wang C C, Lin G, Pae J H, et al.Journal of Coatings Technology, 2012, 72(904), 55.
7 Teng Y, Wen J L, Tao Z, et al. Journal of Functional Materials, 2015, 558 (78), 24.
8 Rokicki G, Lukasik L.Surface Coatings International Part B:Coatings Transactions, 2011, 84(3), 223.
9 Zhong X, Sun H.Chemical Materials for Construction, 2007, 23(5), 17.
10 Abdulagatov A I, Yan Y, Cooper J R, et al.ACS Applied Materials & Interfaces, 2011, 3(12), 4593.
11 Bachmann W E, Wick L B.Journal of the American Chemical Society, 1950, 72(5), 2000.
12 Qiang Z H, Chen X L, Zhao J H, et al.Paint Coatings Industry, 2019, 49(5), 22.
13 Mishra V K, Patel K I.Journal of Dispersion Science and Technology, 2015, 36(7), 1036.
14 Wang Q, Pellegrene B, Soucek M D.Industrial & Engineering Chemistry Research, 2018, 57(36), 12018.
15 El-Bindary A, Kiwaan H, Shoair A G, et al.Pigment & Resin Technology, 2019, 49(2), 102.
16 Pathan S, Ahmad S.ACS Sustainable Chemistry & Engineering, 2016, 4, 3062.
17 Dong W W, Yi Y.Modern Paint & Finishing, 2013, 16 (3), 1(in Chinese).
董维维, 易英. 现代涂料与涂装, 2013, 16(3), 1.
18 Uzoh C F,Obodo N J, Onukwuli O D.Journal of King Saud University Engineering Sciences, 2016, 30(1), 12.
19 Bao Y, Kang Q L.Journal of Inorganic Materials, 2017,32 (6), 581 (in Chinese).
鲍艳, 康巧玲. 无机材料学报, 2017, 32(6), 581.
20 Saravari O, Phapant P, Pimpan V.Journal of Applied Polymer Science, 2005, 96(4), 1170.
21 Kienle R H, Ferguson C S.Industrial & Engineering Chemistry, 2013, 21(4), 349.
22 Hovey A G.Industrial & Engineering Chemistry, 2013, 25(6), 613.
23 Kordzangeneh S, Naghibi S, Esmaeili H.Journal of Materials Engineering and Performance, 2018, 27(1), 219.
24 Hofland A.Progress in Organic Coatings, 2012, 73(4), 274.
25 Zheng S L, Li C, Fu Q T, et al.Materials & Design, 2016, 93, 261.
26 Sun H G, Xiao H H, Song W, et al.Journal of Alloys and Compounds, 2019, 805, 984.
27 Wang G Y, Wen S G, Wang J H, et al.Journal of Shanghai University of Engineering Science, 2019, 33(3), 219 (in Chinese).
王光宇, 温绍国, 王继虎, 等. 上海工程技术大学学报, 2019, 33(3), 219.
28 Mishra V K,Patel K I. Journal of Dispersion Science and Technology, 2015, 36(7), 1036.
29 Godfrey O O, Ifijen I H, Mohammed F U, et al.Heliyon, 2019, 5(5), 1639.
30 William W, Blont J R, Thauming K U O. U. S. patent, 5378757, 2017.
31 Zhou L Q, Pan C Y, Liu S B, et al.Modern Paint & Finishing, 2011, 12(10), 19 (in Chinese).
周丽琼, 潘春跃, 刘寿兵, 等. 现代涂料与涂装, 2011, 12(10), 19.
32 Shi C. China Paint, 2013, 34(22), 2697.
33 Zhong X, Sun H.Green Building, 2007, 23(5), 17 (in Chinese).
钟鑫, 孙慧. 绿色建筑, 2007, 23(5), 17.
34 Billiani J, Gobce M. U. S. patent, 5698625, 2017.
35 Shui X, Shen Y, Fei G, et al.Journal of Applied Polymer Science, 2015, 132(5), 2011.
36 Rahman O U, Bhat S I, Yu H, et al.ACS Sustainable Chemistry & Engineering, 2017, 5(11), 9725.
37 Elrebii M, Boufi S.Journal of Industrial & Engineering Chemistry, 2014, 20(5), 3631.
38 Elrebii M, Kamoun A, Boufi S.Progress in Organic Coatings, 2015, 87, 222.
39 Das P, Sharma N, Puzari A, et al.Polymer Bulletin, 2020,78(4), 214.
40 Rui G, Wang H H. Wang G Q, et al.Applied Surface Science, 2019, 481, 960.
41 Chiplunkar P P, Pratap A P.Progress in Organic Coatings, 2016, 93, 61.
42 Hubert J C, Klaasen R P, Muizebelt W J, et al.Journal of Coatings Technology, 2017, 69(869), 59.
43 Hirt R C, Stafford R W, King F T, et al.Analytical Chemistry, 2015, 27(2), 226.
44 Kurt L, Acar I, Gamze G.Progress in Organic Coatings, 2014, 77(5), 949.
45 Irfan M, Bhat S I, Ahmad S.ACS Sustainable Chemistry & Engineering, 2018, 6(25), 14820.
46 Dannenberg H, Bradley T F, Evans T W.Industrial and Engineering Chemistry, 2014, 41(8), 1709.
47 Flores S, Flores A, Carlos C, et al.Progress in Organic Coatings, 2019, 136, 105.
48 Yin X, Duan H, Wang X, et al.Progress in Organic Coatings, 2014, 77(3), 674.
49 Aung M M, Li W J, Lim H N.Industrial & Engineering Chemistry Research, 2020, 59(5), 1753.
50 Biermann U, Butte W, Holtgrefe R, et al.European Journal of Lipid Science & Technology, 2010, 112(1), 103.
51 Challinor J M.Journal of Analytical & Applied Pyrolysis, 2011, 18(3-4), 233.
52 Li P H, Li P L, Zhu G J.Modern Chemical Industry, 2016, 26(589), 236.
53 Muizebelt W J, Hubert J C, Venderbosch R A M.Progress in Organic Coatings, 2017, 24(1-4), 263.
54 Uschanov P, Heiskanen N, Mononen P, et al.Progress in Organic Coa-tings, 2008, 63(1), 92.
55 Wang Y, Lv B, Wang E, et al.Journal of Functional Materials and Devices, 2011(5), 450.
王毅, 吕滨, 王恩德, 等. 功能材料与器件学报, 2011(5), 450.
56 Huang Q, Liu C, Chen S, et al.Progress in Organic Coatings, 2015, 87, 189.
57 Hadzich A, Flores S, Caprari J, et al.Progress in Organic Coatings, 2018, 117(25), 35.
[1] 魏满想, 高思睿, 刘宏亮, 王鑫, 付海朋, 何立子. Sn对Al-Mg-Ga-Sn阳极合金电化学性能的影响[J]. 材料导报, 2021, 35(Z1): 311-314.
[2] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[3] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[4] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[5] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[6] 魏安柯, 王磊, 王祎. 金属-有机骨架(MOFs)用于锂硫电池硫正极材料改性的研究进展[J]. 材料导报, 2021, 35(13): 13052-13057, 13066.
[7] 周建峰, 翟鑫华, 张盼盼, 何亚鹏, 董劲, 黄惠, 郭忠诚. 富锂锰基正极材料结构优化及晶面调控研究进展[J]. 材料导报, 2021, 35(11): 11057-11065.
[8] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[9] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[10] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[11] 曹勇, 焦增凯, Sultan Alzoabi, 周生刚. 新型节能Pb(1%Ag)/Al层状复合阳极电化学分析和电位分布模拟[J]. 材料导报, 2020, 34(18): 18014-18018.
[12] 程娅伊, 黄剑锋, 李嘉胤, 谢辉, 周影影. 二次可充放电电池用硒化锡负极材料的研究现状[J]. 材料导报, 2020, 34(17): 17139-17148.
[13] 邓安强, 罗永春, 王浩, 赵磊, 郑坤. 新型无镁YNi3.5-xAlx(x=0~0.3)储氢合金的结构和电化学性能[J]. 材料导报, 2020, 34(14): 14110-14115.
[14] 周勇, 赵飞, 高倩, 孙良, 董会, 翟文彦. Sn含量对Al-Zn合金组织与溶解性能的影响[J]. 材料导报, 2019, 33(Z2): 406-409.
[15] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed