Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6039-6043    https://doi.org/10.11896/cldb.19040213
  无机非金属及其复合材料 |
原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响
徐枫1, 严红革1, 陈吉华1, 张正富2, 范长岭1
1 湖南大学材料科学与工程学院,长沙 410082;
2 昆明理工大学材料科学与工程学院,昆明 650093
Impact of Raw Materials on Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Powders Prepared by Enhanced Solid State Reaction
XU Feng1, YAN Hongge1, CHEN Jihua1, ZHANG Zhengfu2, FAN Changling1
1 School of Materials Science and Engineering, Hunan University, Changsha 410082, China;
2 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 3268KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 分别以碳酸盐和氧化物为原料,利用强化固相反应直接合成LiNi1/3Co1/3Mn1/3O2超微粉末。采用X射线衍射仪和扫描电子显微镜表征了以不同原料合成的产物粉末在结构和形貌上的差异,并分别在常温(25℃)和高温(55℃)下对产物进行了电化学性能测试。结果表明:以碳酸盐为原料的产物LC-BM20相比于以氧化物为原料的产物LO-BM20具有更为完整的晶体结构和更细小的粒径分布;当温度为25℃时,LC-BM20在0.1C(1C=270mA/g)倍率下的首周库伦效率高达91.9%,在6C倍率下的放电比容量仍保持在133.0mAh/g,在1C倍率下循环100次后的容量保持率达到88.2%;当温度为55℃时,LO-BM20的性能更优异,在0.1C倍率下的首次放电比容量达到197.0mAh/g,在1C倍率下循环100次后的容量保持率达到82.9%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐枫
严红革
陈吉华
张正富
范长岭
关键词:  LiNi1/3Co1/3Mn1/3O2  强化固相反应  高能球磨  机械力活化  电化学性能    
Abstract: The ultrafine LiNi1/3Co1/3Mn1/3O2 powders were directly synthesized using carbonates or oxides via an enhanced solid state reaction. The microstructures, morphologies and electrochemical properties at 25/55 ℃ of product powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical workstation. The results shows that the well-ordered product powders with a finer size distribution are synthesized using carbonates. At 25 ℃, the initial coulomb efficiency of LC-BM20 reaches 91.9% at 0.1C (1C=270 mA/g) rate, discharge capacity of 133.0 mAh/g is delivered at 6C rate. After cycling 100 times, the capacitance retention still maintains 88.2% at the rate of 1C. At 55 ℃,LO-BM20 shows better electrochemical properties, the initial discharge capacity of LO-BM20 is 197.0 mAh/g at 0.1C. After cycling 100 times, the capacitance retention still maintains 82.9% at the rate of 1C.
Key words:  LiNi1/3Co1/3Mn1/3O2    enhanced solid state reaction    high-energy ball milling    mechanical activated    electrochemical properties
               出版日期:  2020-03-25      发布日期:  2020-03-12
ZTFLH:  TM912  
基金资助: 国家自然科学基金(U1202272)
作者简介:  徐枫,2014年6月毕业于湖南大学,获得工学学士学位。于2014年9月至今在湖南大学攻读博士学位,主要研究方向为粉体材料;严红革,湖南大学教授、博士研究生导师。主要从事先进铝合金、镁合金及其复合材料等领域的研究。主持国家自然科学基金项目和其他部省级纵向课题10余项,发表学术论文150余篇。
引用本文:    
徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
XU Feng, YAN Hongge, CHEN Jihua, ZHANG Zhengfu, FAN Changling. Impact of Raw Materials on Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Powders Prepared by Enhanced Solid State Reaction. Materials Reports, 2020, 34(6): 6039-6043.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040213  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6039
1 Yang C F, Zhang X S, Huang M Y, et al. ACS Applied Materials & Interfaces, 2017, 9 (14), 12408.
2 Kasnatscheew J, Evertz M, Streipert B, et al. Journal of Physical Che-mistry C, 2017, 121 (3), 1521.
3 Zheng Z, Guo X D, Wu Z G, et al. Transactions of Nonferrous Metals Society of China, 2017, 27 (12), 2535 (in Chinese).
郑卓, 郭孝东, 吴振国, 等. 中国有色金属学报, 2017, 27 (12), 2535.
4 Park S, Kim D, Ku H, et al. Electrochimica Acta, 2019, 296, 814.
5 Rui H, Zhang L H, Yan M F, et al. Journal of Materials Science, 2016, 52 (8), 1.
6 Xu J T, Chou S L, Gu Q F, et al. Journal of Power Sources, 2013, 225 (3), 172.
7 David P, Jérémie S, Jean-François C, et al. Journal of Power Sources, 2018, 396, 527.
8 Zhang Y, Jia D Z, Tang Y K, et al. Small, 2018, 14 (27), 1704354.
9 Cheng C X, Fang C, Yi H Y, et al. Journal of Alloys & Compounds, 2018, 753, 155.
10 Li X L, He W X, Li C, et al. Ionics, 2014, 20 (6), 833.
11 Zhang X Y, Mauger A, Qi L, et al. Electrochimica Acta, 2010, 55 (22), 6440.
12 Lv C J, Yang J, Peng Y, et al. Electrochimica Acta, 2019, 297, 258.
13 Luo B, Jiang B, Peng P, et al. Electrochimica Acta, 2019, 297, 398.
14 Xie Y, Gao D, Zhang L L, et al. Ceramics International, 2016, 42 (13), 14587.
15 Luo Z M, Sun Y G, Liu H Y. Chinese Chemical Letters, 2015, 26 (11), 1403.
16 Lv D D, Wang L, Hu P F, et al. Electrochimica Acta, 2017, 247, 803.
17 Ilango P R, Subburaj T, Prasanna K, et al. Materials Chemistry and Physics, 2015, 158, 45.
18 Yano A, Ueda A, Shikano M, et al. Journal of the Electrochemical So-ciety, 2016, 163 (2), A75.
19 Li G Y, Huang Z L, Zuo Z C, et al. Journal of Power Sources, 2015, 281, 69.
[1] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[2] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[3] 曹勇, 焦增凯, Sultan Alzoabi, 周生刚. 新型节能Pb(1%Ag)/Al层状复合阳极电化学分析和电位分布模拟[J]. 材料导报, 2020, 34(18): 18014-18018.
[4] 程娅伊, 黄剑锋, 李嘉胤, 谢辉, 周影影. 二次可充放电电池用硒化锡负极材料的研究现状[J]. 材料导报, 2020, 34(17): 17139-17148.
[5] 邓安强, 罗永春, 王浩, 赵磊, 郑坤. 新型无镁YNi3.5-xAlx(x=0~0.3)储氢合金的结构和电化学性能[J]. 材料导报, 2020, 34(14): 14110-14115.
[6] 周勇, 赵飞, 高倩, 孙良, 董会, 翟文彦. Sn含量对Al-Zn合金组织与溶解性能的影响[J]. 材料导报, 2019, 33(Z2): 406-409.
[7] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[8] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[9] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[10] 张晶, 李红霞, 刘国齐. 高能球磨-盐辅助氮化低温合成α-Si3N4粉体[J]. 材料导报, 2019, 33(5): 739-743.
[11] 计晓琴, 孙德林, 余先纯, 郝晓峰, 陈新义, 朱志红. Fe3+掺杂活化木质素基木材陶瓷的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3390-3395.
[12] 王英, 阮威, 唐仁衡, 肖方明, 孙泰, 黄玲. 不同粒径纳米硅制备Si@C/石墨负极材料及其电化学性能[J]. 材料导报, 2019, 33(18): 3021-3025.
[13] 王永亮, 王春锋, 马荣鑫, 韩志东. 低缺陷密度石墨烯与Co3O4复合材料的制备及电化学性能[J]. 材料导报, 2019, 33(18): 3156-3160.
[14] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[15] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed