Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18014-18018    https://doi.org/10.11896/cldb.19080175
  机非金属及其复合材料 |
新型节能Pb(1%Ag)/Al层状复合阳极电化学分析和电位分布模拟
曹勇1, 焦增凯1, Sultan Alzoabi2, 周生刚1
1 昆明理工大学材料科学与工程学院,昆明 650093
2 Frank R. Seaver College of Science and Engineering, Loyola Marymount University, Los Angeles, CA 90045, USA
Electrochemical Analysis and Potential Distribution Simulation of a Energy-saving Pb(1%Ag)/Al Layered Composite Anode
CAO Yong1, JIAO Zengkai1, SULTAN Alzoabi2, ZHOU Shenggang 1,
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650001, China
2 Frank R. Seaver College of Science and Engineering, Loyola Marymount University, Los Angeles, CA 90045, USA
下载:  全 文 ( PDF ) ( 3214KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探索Pb(1%Ag)/Al层状复合阳极的电化学性能,采用线性扫描伏安(LSV)法、阳极表面电势分布测试方法和扫描电镜(SEM)分析了Pb(1%Ag)/Al层状复合阳极和常规Pb-1%Ag合金阳极的极化曲线、电势分布曲线和阳极表面腐蚀形貌。结果表明,Pb(1%Ag)/Al层状复合电极的钝化电位比常规Pb-1%Ag合金电极低31.1%,且电位分布比常规Pb-1%Ag合金电极均匀,腐蚀形貌比常规Pb-1%Ag合金电极致密。因此,Pb(1%Ag)/Al层状复合电极较常规Pb-1%Ag合金电极具有较低的电极电位、均匀的电势分布和较好的耐腐蚀性能。同时,采用ANSYS模拟平行板电容器电场分布的方法来模拟电势分布,并结合电势分布曲线,分析电势分布趋势以验证电势分布测试方法的准确性。结果表明,模拟数据与实验数据相吻合,进一步印证了Pb(1%Ag)/Al层状复合阳极具有较高的导电性能和电化学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹勇
焦增凯
Sultan Alzoabi
周生刚
关键词:  Pb(1%Ag)/Al层状复合材料  电位分布  电化学性能  ANSYS软件    
Abstract: In order to explore the electrochemical performance of Pb(1%Ag)/Al layered composite anode, linear scanning voltammetry (LSV), anode surface potential distribution test method and scanning electron microscope (SEM) were used to analyze the polarization curve, potential distribution curve and corrosion morphology of the Pb(1%Ag)/Al layered composite anode and the conventional Pb-1%Ag alloy anode. The results showed that the passivation potential of the Pb(1%Ag)/Al layered composite electrode was 31.1% lower than that of the conventional Pb-1%Ag alloy electrode, and the potential distribution was more uniform than that of the conventional Pb-1%Ag alloy electrode, the corrosion morphology was denser than that of the conventional Pb-1%Ag alloy electrode. Therefore, Pb(1%Ag)/Al layered composite electrode exhibited lower electrode potential, uniform potential distribution and higher corrosion resistance compare to the conventional Pb-1%Ag alloy electrode. At the same time, ANSYS was used to simulate the electric field distribution of parallel plate capacitors,for simulating the potential distribution, combined with the potential distribution curve, the potential distribution trend was analyzed to verify the accuracy of the potential distribution test method. The results showed that the simulated data was consistent with the experimental data, which further confirms that the Pb(1%Ag)/Al layered composite anode has high electrical conductivity and electrochemical performance.
Key words:  Pb(1%Ag)/Al layered composite    potential distribution    electrochemical performance    ANSYS software
                    发布日期:  2020-09-12
ZTFLH:  O646.1  
通讯作者:  zsgkmust@126.com   
引用本文:    
曹勇, 焦增凯, Sultan Alzoabi, 周生刚. 新型节能Pb(1%Ag)/Al层状复合阳极电化学分析和电位分布模拟[J]. 材料导报, 2020, 34(18): 18014-18018.
CAO Yong, JIAO Zengkai, SULTAN Alzoabi, ZHOU Shenggang. Electrochemical Analysis and Potential Distribution Simulation of a Energy-saving Pb(1%Ag)/Al Layered Composite Anode. Materials Reports, 2020, 34(18): 18014-18018.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080175  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18014
1 Gang H U, Xu R, He S, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(6),2095.
2 Zhou X Y, Wang S A, Ma C Y, et al. Rare Metal Materials and Engineering, 2018, 47(7), 1999.
3 Yang H T, et al. Rare Metal Materials and Engineering, 2014, 43(12),2889.
4 Zhou X, Shuai W, Juan Y, et al. Transactions of Nonferrous Metals Socie-ty of China, 2017, 27(9), 2096.
5 Wagram. Distribution of current on electrode surface during metal electrolytic deposition, Mechanical Industry Press, China,1958.
6 Chen Y X. Electrolysis engineering, Tianjin Science and Technology Press, China, 1993.
7 Guo X L. Study on the influence of aqueous field electric field distribution on electrolytic extraction of zinc, Master's Thesis, Kunming University of Science and Technology,2017.
8 Zhu P Y, Zhou S G, Sun Y, et al. Journal of Materials Heat Treatment, 2009(4),1.
9 Zhou S G, Zhang W, Zhu P X, et al. Journal of Yunnan University: Natural Science Edition, 2009, 31(6), 600.
10 Zhang Y, Chen B, Yang H, et al. Journal of Central South University, 2014, 21(1), 83.
11 Liang F, Zhu P X, Zhou S G, et al. Journal of Materials Heat Treatment, 2012, 33(1), 21.
12 Chen Y X. Power Technology, 1996(1),21(in Chinese).
13 Wu H H. Applied electrochemistry, Xiamen University Press, China, 2006.
14 Král P, Křivák P, Bača P, et al. Journal of Power Sources, 2002, 105(1),35.
15 Song S Z. Research Methods of Corrosion Electrochemistry, Chemical Industry Press, China, 1988.
16 Calábek M, Micka K, Bača P, et al. Journal of Power Sources, 2000, 85(1),145.17 Gao J. Calculation of electric field distribution and electrode structure optimization in aluminum electrolysis cell based on ANSYS, Master's Thesis,Central South University, China, 2010.
18 Cui X F, Zou Z, Zhang H L, et al. Journal of Central South University: Natural Science Edition, 2012, 43(3),815.
19 Zhou S G, Zhu P X, Sun Y, et al. Thermal Engineering, 2008, 37(24), 5.
20 Si N C, Fu M X. Nonferrous metal materials and preparation, Chemical Industry Press, China, 2006.
21 Zhou S G, Zhu P X. Development and properties of metal-based layered composite functional materials, Metallurgical Industry Press, China, 2015.
[1] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[2] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[3] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[4] 程娅伊, 黄剑锋, 李嘉胤, 谢辉, 周影影. 二次可充放电电池用硒化锡负极材料的研究现状[J]. 材料导报, 2020, 34(17): 17139-17148.
[5] 邓安强, 罗永春, 王浩, 赵磊, 郑坤. 新型无镁YNi3.5-xAlx(x=0~0.3)储氢合金的结构和电化学性能[J]. 材料导报, 2020, 34(14): 14110-14115.
[6] 周勇, 赵飞, 高倩, 孙良, 董会, 翟文彦. Sn含量对Al-Zn合金组织与溶解性能的影响[J]. 材料导报, 2019, 33(Z2): 406-409.
[7] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[8] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[9] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[10] 计晓琴, 孙德林, 余先纯, 郝晓峰, 陈新义, 朱志红. Fe3+掺杂活化木质素基木材陶瓷的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3390-3395.
[11] 王英, 阮威, 唐仁衡, 肖方明, 孙泰, 黄玲. 不同粒径纳米硅制备Si@C/石墨负极材料及其电化学性能[J]. 材料导报, 2019, 33(18): 3021-3025.
[12] 王永亮, 王春锋, 马荣鑫, 韩志东. 低缺陷密度石墨烯与Co3O4复合材料的制备及电化学性能[J]. 材料导报, 2019, 33(18): 3156-3160.
[13] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[14] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[15] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed