Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 135-142    https://doi.org/10.11896/cldb.201901015
  材料与可持续发展(一)——面向洁净能源的先进材料 |
铝-空气电池阳极材料及其电解液的研究进展
吴子彬1, 宋森森1, 董安1, 杨宗武1, 李雪科1, 秦克1, 张海涛1,, 班春燕1, 李宝绵1, 崔建忠1, HiromiNagaumi2
1 东北大学材料电磁过程研究教育部重点实验室(EMP),沈阳 110006
2 苏州大学沙钢钢铁学院,苏州 215100
Research Progress on Anode Materials and Electrolytes of Aluminum-Air Battery
WU Zibin1, SONG Sensen1, DONG An1, YANG Zongwu1, LI Xueke1, QIN Ke1, ZHANG Haitao1, BAN Chunyan1, LI Baomian1, CUI Jianzhong1, Hiromi Nagaumi2
1 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110006
2 School of Iron and Steel, Soochow University, Suzhou 215100
下载:  全 文 ( PDF ) ( 1973KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属-空气电池自进入人们的视野以来,由于其高能量密度和容量、平稳的放电特性、对负载和温度的依赖性低和较低的制造成本等特点,受到越来越多的关注。其中,锂-空气电池因具有极大的应用潜力而引起了学者们极大的研究兴趣;然而,锂-空气电池对周围环境十分敏感,容易造成爆炸,存在安全隐患;此外,锂离子电池的大规模生产和应用造成了原材料锂价格的大幅上涨。为了实现电池的商业化应用,选用来源广泛、经济实惠的电极材料成为必不可少的条件。铝是地壳中含量最多的金属元素,具有矿藏丰富、质量轻、无污染、安全、价格低廉和回收利用率高等优点,是一种潜在的储能材料。铝的理论质量比容量为2 980 mAh·g-1,仅次于锂(3 860 mAh·g-1),其体积比容量(8.04 Ah·cm-3)约是锂的四倍(2.05 Ah·cm-3),被认为是金属-空气电池最有吸引力的候选阳极材料,也是化石燃料最有吸引力的替代者之一。
   然而,铝在空气和水溶液中表面上自发形成的钝化膜会显著降低铝阳极材料的活性;在碱性溶液中,铝-空气电池存在的主要问题是铝阳极材料自腐蚀导致氢析出速率较高,库伦效率降低和含水电解液的流动性可能导致的多孔空气阴极中毛细管的渗透及泄漏。因此,近年来,学者们不断开展深入研究,探索出以下几种改善铝阳极的方法:通过向铝中添加合金元素Ga、In、Sn、Zn、Mg、Bi、Mn等来改变铝阳极材料的活性和减少析氢反应;对电解液添加剂进行研究,发现部分植物提取液作为电解液添加剂可以保持铝阳极活性,降低析氢腐蚀;开发离子液体、固态和凝胶电解液,一方面可以减小铝阳极自腐蚀,提高阳极利用率,另一方面可减小铝-空气电池体积,增加电池的灵活性。
   目前研究获得性能较好的碱性铝-空气电池的阳极材料有Al-Ga/In-Mg系列、Al-Ga/In-Mg-Sn系列、Al-Ga-In-Bi-Pb系列等合金,其中部分铝阳极合金已经实现了实际应用。近几年研究工作获得了羽扇豆提取物、茄属植物叶的提取物等绿色电解液添加剂,其可以保持铝阳极的电化学活性,降低腐蚀率。此外,研究发现,室温下低聚氟化氢离子液体作为电解液可以活化铝阳极,降低其腐蚀速率,一些便携式铝-空气电池采用固态或凝胶电解液已经在护理医疗设备、商用LED手表方面应用。
   本文主要从铝阳极材料、电解质和电解质添加剂三方面论述了其对铝-空气电池性能的影响,并简单阐述了铝-空气电池放电的基本原理、面临的挑战和最新研究进展及应用。首先,综述了铝与合金元素的合金化,以此减少铝的自腐蚀,提高电池性能;并介绍了通过一定的加工工艺来改善铝阳极电化学性能的方法。其次,探讨了水溶剂电解质和非水溶剂电解质在铝-空气电池中的应用。同时,也研究了电解质添加剂对铝-空气电池的电化学性能的影响。最后,进一步明确了空气电池未来的研究和发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴子彬
宋森森
董安
杨宗武
李雪科
秦克
张海涛
班春燕
李宝绵
崔建忠
HiromiNagaumi
关键词:  铝-空气电池  铝阳极材料  电解质  电解质添加剂  电化学性能    
Abstract: Currently, metal-air batteries have attracted increasing attention due to their high energy density and capacity, stable discharge characteristics, low dependence on load and temperature, and low manufacturing costs. Among them, lithium-air batteries have been extensively investigated by virtue of their widespread application potential. However, lithium-air batteries are extremely sensitive to the surrounding environment, and are prone to cause explosion hazards that threaten personal safety. Furthermore, the mass production and application have led to a sharp rise in the price of lithium resources. For the sake of realizing commercial applications of batteries, selecting rich resources and low cost of electrode materials are extremely vital. Aluminum is the most abundant metal element in the earth’s crust with a series of superior merits such as wide source, light quality, no pollution, safety, low price and high recovery efficiency, which is considered to be a potential energy storage material. Utilizing the aluminum as electrodes, it shows unique performance, for instance, heoretical mass specific capacity of aluminum is 2 980 mAh·g-1, second only to lithium (3 860 mAh·g-1), its volumetric specific capacity (8.04 Ah·cm-3) is four times higher than that of lithium (2.05 Ah·cm-3), making it an ideal candidate anode material for metal-air batteries and one of the most attractive alternatives to fossil fuels.
However, the passivation film formed by aluminum on the surface of air and aqueous solution significantly reduced the activity of aluminum anode material. In alkaline solution, the primal problem of aluminum-air battery is the high hydrogen precipitation rate, low Coulomb efficiency caused by the self-corrosion of the aluminum anode material, and capillary permeation and leakage in porous air cathode on account of the fluidity of the aqueous electrolyte. Hence, researchers have devoted great effort to ameliorate the activity of aluminum anode materials from the following aspects. Alloying elements like Ga, In, Sn, Zn, Mg, Bi and Mn have been introduced to change the activity of aluminium anode material and reduce hydrogen evolution reaction. Research on electrolyte additives have been carried out, and it is found that some plant extracts served as electrolyte additives are able to maintain the aluminum anode activity and reduce hydrogen evolution corrosion. Ionic liquid electrolytes, solid and gel electrolytes have been developed, which can reduce the aluminum anode corrosion and the volume of aluminum-air batteries, and increase the flexibility of battery.
Currently, the anode materials for alkaline aluminum-air batteries exhibiting superior properties are Al-Ga/In-Mg series, Al-Ga/In-Mg-Sn series, and Al-Ga-In-Bi-Pb series alloys. Some of the aluminum anode alloys have already been adopted to daily life. In addition, green electrolyte additives such as extracts of lupin and extracts of nightshade leaves that can maintain the electrochemical activity of aluminum anodes and reduce the corrosion rate have been obtained in recent years. Moreover, the investigators indicated that oligo-hydrogen fluoride ionic liquids at room temperature are capable of activating aluminum anodes and reducing theirs corrosion rate, certain portable aluminum-air batteries with solid or gel electrolytes have been already utilized in care medical equipment and commercial LED watch.
This paper chiefly discussed the effects of aluminum anode materials, electrolytes and electrolyte additives on the performance of aluminum-air batteries, and briefly expounded the basic principles, current challenges and recent developments and applications of aluminum-air batteries. Firstly, summarized the alloying of aluminum and alloying elements which can reduce the self-corrosion of aluminum and ameliorate the battery performance. Then, recommended several methods for enhancing the electrochemical performance of aluminum anodes by certain processing techniques. Besides, the writer probed the circumstances on applying water-solvent electrolytes and non-aqueous solvent electrolytes in aluminum-air batteries, and the effect of electrolyte additives on electrochemical performance of aluminum-air batteries. Finally, the future research and deve-lopment direction of air batteries was further clarified.
Key words:  aluminum-air battery    aluminum anode material    electrolyte    electrolyte additive    electrochemical performance
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  TM911  
基金资助: 国家自然科学基金(U1864209)
作者简介:  吴子彬,2014年6月毕业于辽宁科技大学,获得工学学士学位,2017年6月毕业于东北大学,获得工学硕士学位。张海涛,东北大学材料电磁过程研究教育部重点实验室(EMP),副教授,硕士研究生导师,haitao_zhang@epm.neu.edu.cn。
引用本文:    
吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
WU Zibin, SONG Sensen, DONG An, YANG Zongwu, LI Xueke, QIN Ke, ZHANG Haitao, BAN Chunyan, LI Baomian, CUI Jianzhong, Hiromi Nagaumi. Research Progress on Anode Materials and Electrolytes of Aluminum-Air Battery. Materials Reports, 2019, 33(1): 135-142.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901015  或          http://www.mater-rep.com/CN/Y2019/V33/I1/135
1 Blurton K F, Sammells A F. Journal of Power Sources,1979,4(4),263.2 Kraytsberg A, Ein-Eli Y. Nano Energy,2013,2(4),468.3 Li Q, Bjerrum N J. Journal of Power Sources,2002,110(1),1. 4 Agladze G, Nikoleishvili P, Kveselava V. Journal of Power Sources,2012,218(12),46. 5 Reddy T B, Linden D. Linden’s handbook of batteries, McGraw-Hill,USA,2010.6 Schwarz H G. Encyclopedia of Energy,DOI:10.1016/B0-12-176480-X/00372-7.7 Zaromb S. Journal of the Electrochemical Society,1962,109(12),1125.8 Reding J T, Newport J J. Materials Performance,2009,5(12),15. 9 Mideen A S, Ganesan M, Anbukulandainathan M. Journal of Power Sources,1989,27(3),235. 10 Gundersen J T B, Aytaç A, Nordlien J H. Corrosion Science,2004,46(3),697.11 Lu G Q,Shi P F,Zhang H.Battery Bimonthly,1983(3),4(in Chinese).卢国琦,史鹏飞,张红.电池,1983(3),4.12 Li Z Y, Qin X, Yu Y B. Acta Physico-Chimica Sinica,1999,15(4),381(in Chinese).李振亚, 秦学, 余远彬.物理化学学报,1999,15(4),381.13 Yin Y X, Li Q, Jiang H L. Rare Metal Materials and Engineering,2009,38(s1),76(in Chinese).尹延西,李卿,江洪林.稀有金属材料与工程,2009,38(s1),76.14 Li B Y, Dong Q, Zhang J. Materials China,2016,35(11),849(in Chinese).李碧谕,东青,张佼.中国材料进展,2016,35(11),849.15 Fan L, Lu H. Journal of Power Sources,2015,284,409.16 Ma J, Wen J, Gao J. Journal of Power Sources,2014,253(3),419.17 Wang D P, Zhang D Q. Journal of Power Sources,2015,297,464.18 Liu Y, Sun Q, Li W, et al. Green Energy & Environment,2017,2(3),246.19 Niksa M J, Niksa A J, Noscal J M. U.S. patent, US4925744,1990.20 Albert I J, Kulandainathan M A, Ganesan M. Journal of Applied Electrochemistry,1989,19(4),547.21 Cho Y J, Park I J, Lee H J. Journal of Power Sources,2015,277,370.22 Wang Q, Miao H, Xue Y, et al. RSC Advances,2017,7(42),25838.23 Hunter, Anthony J. The anodic behavior of aluminium alloys in alkaline electrolytes. Ph.D. Thesis, University of Oxford, UK,1989.24 Tuck C D S, Hunter J A, Scamans G M. Cheminform,1988,19(15),2970.25 Egan D R, León C P D, Wood R J K. Journal of Power Sources,2013,236(25),293.26 Reboul M C, Gimenez P, Rameau J J. Corrosion,1984,40(7),366.27 Salinas D R, Bessone J B. Corrosion,2012,47(9),665.28 Gudić S, Radosević J, Krpan-Lisica D. Electrochimica Acta,2001,46(16),2515.29 Moghanni-Bavil-Olyaei H, Arjomandi J, Hosseini M. Journal of Alloys & Compounds,2016,695,2637.30 Karaminezhaad M, Jafari A H, Sarrafi A, et al. Anti-Corrosion Methods and Materials,2013,53(2),102.31 Murai T, Tamura Y. U.S. patent, US4141725,1979.32 Liang M G, Wen J B, He J G, et al. Transactions of Materials and Heat Treatment,2015,36(6),41(in Chinese).梁明岗,文九巴,贺俊光,等.材料热处理学报,2015,36(6),41.33 Shilyaeva Y, Gavrilov S, Matyna L. Journal of Thermal Analysis & Calorimetry,2014,118(2),937.34 Abedin S Z E, Endres F. Journal of Applied Electrochemistry,2004,34(10),1071.35 Yan X J, Fu Y, Lang X Z. Nonferrous Metals Engineering,2006,58(1),42(in Chinese).翟秀静,符岩,郎晓珍.有色金属工程,2006,58(1),42.36 Ma J, Wen J. Corrosion Science,2009,51(9),2115.37 Shang Y J. Hot Working Technology,2017(12),68(in Chinese).尚用甲.热加工工艺,2017(12),68.38 Li Y J, Zhang W Z, Marthinsen K. Acta Materialia,2012,60(17),5963.39 Choi S, Lee D, Kim G, et al. Advanced Functional Materials,2017,27(35),1702244.40 Srinivas M, Adapaka S K, Neelakantan L. Journal of Alloys and Compounds,2016,683,647.41 Graver B, Helvoort A T J V, Nisancioglu K. Corrosion Science,2010,52(11),3774.42 Gundersen J T B, Aytaç A, Nordlien J H. Corrosion Science,2004,46(3),697.43 Senel E, Nisancioglu K. Corrosion Science,2014,88(6),280.44 Fan L, Lu H. Journal of Power Sources,2015,284,409.45 He J G, Wen J B, Zhou X D, et al. Corrosion Science and Protection Technology,2012,24(6),484.46 Liang S Q, Zhang Y, Guan D K, et al. Transactions of Nonferrous Metals Society of China,2012,20(6),942.47 Saidman S B, Bessone J B. Electrochimica Acta,1997,42(3),413.48 Flamini D O, Saidman S B. Materials Chemistry and Physics,2012,136(1),103.49 Khireche S, Boughrara D, Kadri A, et al. Corrosion Science,2014,87(5),504. 50 Mokhtar M, Talib M Z M, Majlan E H, et al. Journal of Industrial and Engineering Chemistry,2015,32,1.51 Wilhelmsen W, Arnesen T, Hasvold , et al. Cheminform,1991,22(11),79.52 Nestoridi M, Pletcher D, Wood R J K. Journal of Power Sources,2008,178(1),445.53 Shayeb H A E, Wahab F M A E, Abedin S Z E. Journal of Applied Electrochemistry,2001,43(4),655.54 Gudić S, Smoljko I, Kliskić M. Materials Chemistry and Physics,2010,121(3),561.55 Ezuber H, El-Houd A, El-Shawesh F. Materials & Design,2008,29(4),801.56 Simka W,Puszczyk D,Nawrat G.Electrochimica Acta,2009,54(23),5307.57 Zheng Y. International Journal of Electrochemical Science,2016,11(7),6095.58 Zheng Y, Zheng Y, Wang Q, et al. Journal of Chemical & Engineering Data,2016,61(3),1023.59 Revel R, Audichon T, Gonzalez S. Journal of Power Sources,2014,272,415.60 Mokhtar M, Talib M Z M, Majlan E H, et al. Journal of Industrial & Engineering Chemistry,2015,32,1.61 Zhang Z, Zuo C, Liu Z, et al. Journal of Power Sources,2014,251,470.62 Xu Y, Zhao Y, Ren J, et al. Angewandte Chemie International Edition,2016,55(28),7979.63 Madram, A R, Shokri F, Sovizi M R, et al. Portugaliae Electrochimica Acta,2016,34(6),395.64 Brito P S D, Sequeira C A C. Journal of Fuel Cell Science & Technology,2013,11(1),011008.65 Sun Z, Lu H, Hong Q, et al. ECS Electrochemistry Letters,2015,4(12),A133.66 Umoren S,Solomon M M.Open Materials Science Journal,2014,8(1),39.67 Liu J, Wang D, Zhang D, et al. Journal of Power Sources,2016,335,1.68 Shayeb H A E, Wahab F M A E, Abedin S Z E. Corrosion Science,2001,43(4),655.69 Ríos A P D L, Hernández-Fernández F J, Alguacil F J, et al. Separation & Purification Technology,2012,97(36),150.70 Cigala R M, Stefano C D, Giacalone A, et al. Journal of Chemical & Engineering Data,2011,56(4),1108.71 Wang X Y, Wang J M, Wang Q L, et al. Materials & Corrosion,2015,62(12),1149.72 Martin A D, Zhu J H. ECS Electrochemistry Letters,2012,1(1),A13.73 Avei M R, Jafarian M, Olyaei H M B, et al. Materials Chemistry & Phy-sics,2013,143(1),133.74 Liu J, Wang D, Zhang D, et al. Journal of Power Sources,2016,335,1. 75 Awad M K, Metwally M S, Soliman S A, et al. Journal of Industrial & Engineering Chemistry,2014,20(3),796.76 El-Haddad M N,Fouda A S.Journal of Molecular Liquids,2015,209,480.77 Fares Mohammad M, Maayta A K, Al-Mustafa Jamil A. Journal of Adhesion Science & Technology,2013,27(23),2495.78 Fares M M, Maayta A K, Al-Qudah M M. Corrosion Science,2012,60(3),112.79 Deng S, Li X. Corrosion Science,2012,64(6),253.80 Yadav S, Choudhary G, Sharma A. International Journal of Chemtech Research,2013,5(4),1815.81 Othman N K, Mohamad N, Zulkafli R, et al. In: National Physics Conference. American,2013,pp.243.82 Rodic P, Milosev I. Journal of the Electrochemical Society,2016,163(3),C85.83 Qafsaoui W,Kendig M W,Perrot H,et al. Corrosion Science,2015,92,245.84 Halambek J, Berković K, Vorkapić Fura J. Materials Chemistry & Phy-sics,2013,137(3),788.85 Geetha S, Lakshmi S, Bharathi K. Journal of Chemical & Pharmaceutical Research,2013,5(5),195.86 Irshedat M K, Nawafleh E M, Bataineh T T, et al. Portugaliae Electrochimica Acta,2013,31(1),1.87 Grishina E, Gelman D, Belopukhov S, et al. Chemsuschem,2016,9(16),2103.88 Gelman D, Lasman I, Elfimchev S, et al. Journal of Power Sources,2015,285,100.89 Liu J, Wang D, Zhang D, et al. Journal of Power Sources,2016,335,1.90 Linden D. Fuel & Energy Abstracts,2002,36(36),265.91 Fotouhi G, Ogier C, Kim J H, et al. Journal of Micromechanics & Mic-roengineering,2016,26(5),055011.92 Liu Q, Chang Z, Li Z, et al. Small Methods,2017,2,1700231.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[3] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[4] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[5] 计晓琴, 孙德林, 余先纯, 郝晓峰, 陈新义, 朱志红. Fe3+掺杂活化木质素基木材陶瓷的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3390-3395.
[6] 王英, 阮威, 唐仁衡, 肖方明, 孙泰, 黄玲. 不同粒径纳米硅制备Si@C/石墨负极材料及其电化学性能[J]. 材料导报, 2019, 33(18): 3021-3025.
[7] 王永亮, 王春锋, 马荣鑫, 韩志东. 低缺陷密度石墨烯与Co3O4复合材料的制备及电化学性能[J]. 材料导报, 2019, 33(18): 3156-3160.
[8] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[9] 陈雷行, 苏金瑞, 何豪, 张宗镇, 蔡彬. 质子导体固体氧化物燃料电池的PrBa0.5Sr0.5Cu2O6-δ复合阴极材料[J]. 材料导报, 2019, 33(10): 1615-1618.
[10] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[11] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[12] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[13] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[14] 马志鸣, 肖仁贵, 廖霞, 柯翔. 片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响[J]. 材料导报, 2018, 32(19): 3325-3331.
[15] 邓安强, 罗永春, 王浩, 赵磊, 罗元魁. 退火处理对A2B7型La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1[J]. 材料导报, 2018, 32(15): 2565-2570.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed