Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 127-134    https://doi.org/10.11896/cldb.201901014
  材料与可持续发展(一)——面向洁净能源的先进材料 |
形貌可控的铂类贵金属氧还原电催化剂研究进展
郝佳瑜1, 刘易斯2, 李文章1,3,4, 李洁1,3,4
1 中南大学化学化工学院,长沙 410083
2 加拿大西安大略大学机械与材料科学系,安大略伦敦 N6A 5B9
3 中南大学锰资源高效清洁利用湖南省重点实验室,长沙 410083
4 中南大学稀有金属冶金与材料制备湖南省重点实验室,长沙 410083
Recent Advances on Shape-controlled Pt-based Noble-metal Electrocatalysts for Oxygen Reduction Reaction
HAO Jiayu1, LIU Yisi2, LI Wenzhang1,3,4, LI Jie1,3,4
1 School of Chemistry and Chemical Engineering, Central South University, Changsha 410083
2 Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
3 Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083
4 Hunan Key Laboratory for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 2936KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属-空气电池是一类以金属燃料作为负极活性物质,空气中的氧气作为正极活性物质,正负极活性物质反应产生的化学能通过电化学反应而非燃烧反应转化成电能的环境友好型燃料电池。金属-空气电池的成功运行往往依赖于高效的空气电极,氧还原过程作为空气电极的主反应,还原过程中产生的高过电位严重制约着金属-空气电池的大规模应用。目前金属-空气电池阴极普遍使用昂贵的Pt/C氧还原催化剂材料来降低氧还原过程的高过电位,最大程度地减少电池电压以及输出功率的损失。氧还原催化剂材料的研究重点是寻找更高效、廉价的催化剂。目前常见的氧还原催化剂主要包含铂类贵金属、过渡金属氧化物和硫化物以及碳基非金属复合材料,其中铂类贵金属型氧还原催化剂凭借其优异的氧还原催化性能得到广泛关注。随着化学合成手段的不断发展,越来越多的异质结构铂类贵金属型氧还原催化剂被合成,基于各组分之间独特的协同作用,其往往表现出优于单一组分的催化性能,近几年对铂类贵金属型氧还原催化剂的研究主要集中在以下两个方面:(1)探究铂类贵金属催化剂表面元素组成及原子排布与其催化活性之间的关系,例如,研究纯铂纳米晶的晶面指数与其氧还原催化性能之间的关系;(2)设计特殊结构的铂类催化剂来达到优化氧还原催化剂催化活性和降低材料生产成本的目的,例如,在廉价核材料上通过异质外延生长的方式沉积铂壳层,可大大提升铂原子的催化效率。
   本文归纳了形貌可控的铂类贵金属氧还原催化剂的研究进展,分别对规则多面体型纯铂及铂类合金纳米晶,特殊结构铂类合金纳米晶氧还原催化剂进行了详细介绍。此外,为了更好地理解氧还原的催化机制,本文就氧还原过程的动力学与热力学原理进行了简单总结。由于铂类贵金属氧还原催化剂的形貌对其氧还原活性影响很大,为了更好地说明催化剂形貌的设计与合成原理,本文还补充说明了纳米晶体的生长机制。最后,简要总结了铂类贵金属型氧还原催化剂未来的研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝佳瑜
刘易斯
李文章
李洁
关键词:  铂纳米晶  贵金属类合金  形貌控制  氧还原反应  电催化剂    
Abstract: Metal-air batteries are pertained to an environment-friendly fuel cell with metal fuel as active substance for cathode and oxygen in air as active substance for anode, which directly convert chemical energy of fuel and oxidant into electric energy via electrochemical reaction rather than combustion reactions. The successful operation of metal-air batteries highly relies on efficient air-electrode, the high overpotential generated during the oxygen reduction has seriously restricted their widespread application. To cure the above problem, the air-electrode generally utilizes noble-metal Pt/C electrocatalyst to trigger the oxygen reduction reaction (ORR) as close to the reversible conditions as possible (i.e. with an overpotential as close to zero as possible).Searching for more efficient and low-cost electrocatalysts for ORR is presently an urgent task of study. Common oxygen reduction catalysts mainly include Pt-based noble metals, transition metal oxides and sulfides, and carbon-based composites, etc. Among them, Pt-based noble-metal electrocatalysts are the state-of-the-art electrocatalysts for ORR. The continuous development of chemical synthesis methods contribute to the prosperity of research in Pt-based noble-metal electrocatalysts with heterogeneous structures, which exhibit excellent catalytic activity due to the synergistic effect. Currently researches on Pt-based noble-metal electrocatalysts mainly revolve round the following two aspects. Ⅰ. Explore the relationship between catalytic activity and elemental composition or atomic arrangement of Pt-based noble-metal electrocatalysts, for instance, the mechanistic basis of the interaction of the Miller indices of Pt single namocrystal and its catalytic activity. Ⅱ. Design unique structure to optimize catalytic activity and reduce the costs for Pt-based noble-metal electrocatalysts. For example, depositing a thin Pt-based shell on an inexpensive core can remarkably ameliorate the catalytic efficiency of Pt atoms.
This review aims to summarize the recent advances in shape-controlled Pt-based noble-metal electrocatalysts for ORR, with a particular concern over Pt polyhedra, Pt alloys polyhedra, and Pt-based catalysts with unique structure. Furthermore, the thermodynamics and kinetics of ORR are expounds, aiming at providing a better understanding of catalytic mechanism of oxygen reduction. As is known to all, the morphology of Pt-based noble-metal electrocatalysts exert a serious influence on their activity, therefore, the growth mechanisms of noble-metal nanocrystals are illustrated as well for better explaining the principles of morphology design and synthesis. Eventually, the future development direction of Pt-based noble-metal oxygen reduction catalysts is prospected.
Key words:  platinum nanocrystals    noble-metal nanocrystals    shape-controlled    oxygen reduction reaction    electrocatalyst
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  O646  
基金资助: 国家自然科学基金项目(51474255)
作者简介:  郝佳瑜,2015年本科毕业于中南大学化学化工学院应用化学系,获得理学学士学位。李洁,2001年博士毕业于中南大学。现任中南大学化学化工学院教授,博士生导师,中国有色金属学会冶金物理化学学术委员会委员,lijie@scu.edu.cn。
引用本文:    
郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
HAO Jiayu, LIU Yisi, LI Wenzhang, LI Jie. Recent Advances on Shape-controlled Pt-based Noble-metal Electrocatalysts for Oxygen Reduction Reaction. Materials Reports, 2019, 33(1): 127-134.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901014  或          http://www.mater-rep.com/CN/Y2019/V33/I1/127
1 Tang Y G. Functional Material Information,2012,9(2),21(in Chinese).唐有根.功能材料信息,2012,9(2),21.2 Miao H, Xue J Y, Zhou X F, et al. Progress in Chemistry,2015,27(7),935(in Chinese).苗鹤,薛业建,周旭峰,等.化学进展,2015,27(7),935.3 Mao Z Q, Xie X F, Lu T H. Fuel Cell. Chemical Industry Press,2005(in Chinese).毛宗强,谢晓峰,陆天虹.燃料电池,化学工业出版社,2005.4 Adžić R R, Strbac S, Anastasijević N. Materials Chemistry and Physics,1989,22(3-4),349.5 Blizanac B R, Markovic P N, N M. The Journal of Physical Chemistry B,2006,110(10),4735. 6 Demarconnay L, Coutanceau C, Léger J M. Electrochimica Acta,2004,49(25),4513. 7 Hong J W, Lee S U, Lee Y W, et al. Journal of the American Chemical Society,2012,134(10),4565. 8 Lee C L, Yang C C, Liu C R, et al. Journal of Power Sources,2014,268,712.9 Perez J, Gonzalez E, Ticianelli E. Electrochimica Acta,1998,44(8),1329.10 Srejic I, Rakocevic Z, Nenadovic M, et al. Electrochimica Acta,2015,169,22.11 Cheng F Y, Chen J. Chemical Society Reviews,2012,41(6),2172.12 Ge X M, Sumboja A, Wuu D, et al. ACS Catalysis,2015,5(8),4643.13 Shao M H, Chang Q W, Dodelet J P, et al. Chemical Reviews,2016,116(6),3594.14 Luo Z H, Zhu Q F, Huang Y F, et al. Materials Review A: Review Papers,2016,30(5),138(in Chinese).罗志虹,朱其峰,黄业富,等.材料导报:综述篇,2016,30(5),138. 15 Dong Q Z, Wan H S, Zeng W X, et al. Materials Review A: Review Papers,2017,31(5),81(in Chinese).董奇志,万汉生,曾文霞,等.材料导报:综述篇,2017,31(5),81.16 Vanyy' sek P. In: CNC Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press,2009,pp.23.17 Jaclyn D, Wiggins C, Stevenson K J. The Journal of Physical Chemistry C,2011,115(40),20002. 18 Markovie N M, Ross Jr P N. Surface Science Reports,2002,45,117.19 Marković N M, Adžić R R, Cahan B D, et al. Journal of Electroanalytical Chemistry,1994,377(1-2),249. 20 Marković N M, Gasteiger H A, Philip N R. The Journal of Physical Chemistry,1995,99,3411.21 Marković N M, Thomas J S, Philip N R. Fuel Cell,2016,1(2),105. 22 Vaissiere B,Fowler P W, Deza M. Journal of Chemical Information Computer Science,2001,41,376. 23 Alexander A, Proussevitcha D L,Sahagian. Computer Geosciences,2001,27,441. 24 Zhou Z Y, Tian N, Huang Z Z, et al. Faraday Discussions,2009,140,9.25 Marković N M, Gasteiger H A, Philip N R. The Journal of Physical Chemistry,1996,100,6715.26 Xia Y N, Xiong Y J, Lim B, et al. Angewandte Chemie International Edition,2009,48(1),60.27 Tao A R, Habas S, Yang P. Small,2008,4(3),310.28 Xiong Y J, Xia Y N. Advanced Materials,2007,19(20),3385.29 Wang C, Daimon H, Lee Y, et al. Journal of the American Chemical Society,2007,129,6974.30 Huang X Q, Zhao Z P, Fan J M, et al. Journal of the American Chemical Society,2011,133(13),4718.31 Lim B, Jiang M J, Tao J, et al. Advanced Functional Materials,2009,19(2),189.32 Lim S I, Ojea-Jimenez I, Varon M, et al. Nano Letters,2010,10(3),964.33 Chen Q R, Neville V. Progress in Surface Science,2003,73(4-8),59.34 Bu L Z, Feng Y G, Yao J L,et al. Nano Research,2016,9(9),2811.35 Leong G J, Schulze M C, Strand M B, et al. Applied Organometallic Chemistry,2014,28(1),1.36 Zeng X M, Huang R, Shao G F, et al. The Journal of Physical Chemistry A,2014,2(29),11480.37 Tian N, Zhou Z Y, Sun S G, et al. Science,2007,316(5825),732.38 Xiao J, Liu S. Tian N, et al. Journal of the American Chemical Society,2013,135(50),18754.39 Lu B G, Du J H, Tian S, et al. Nanoscale,2016,8(22),11559.40 Wei L, Zhou Z Y, Chen S P, et al. Chemical Communications (Camb),2013,49(95),11152.41 Tian N, Zhou Z Y, Sun S G. The Journal of Physical Chemistry C,2008,112,19801.42 Gasteiger H A, Kocha S S, Sompalli B, et al. The Journal of Physical Chemistry B: Environmental,2005,56(1-2),9.43 Du X X, Wang X X, He Y , et al. Materials Review B: Research Papers,2016,30(10),1(in Chinese).杜鑫鑫,王晓霞,贺阳,等.材料导报:研究篇,2016,30(10),1.44 Wang Y J, Zhao N N, Fang B Z, et al. Chemical Reviews,2015,115(9),3433.45 Stamenkovic V R, Mun B S, Arenz M, et al. Nature Materials,2007,6(3),241.46 Strasser P. Science,2015,349,379.47 Vojislav R S, Ben F, Bongjin S M, et al. Science,2007,315,493.48 Chen C, Kang, Y J, Huo Z Y, et al. Science,2014,343,1339.49 Cui C H, Gan L, Heggen M, et al. Nature Materials,2013,12(8),765.50 Ding J B, Bu L Z, Guo S J, et al. Nano Letters,2016,16(4),2762.51 Lin G, Cui C H, Marc H, et al. Science,2014,346,1502.52 Niu Z, Becknell N, Yu Y, et al. Nature Materials,2016,15(11),1188.53 Huang X Q, Zhao Z P, Cao L, et al. Science,2015,348,1230.54 Xu X L, Zhang X, Sun H, et al. Angewandte Chemie International Edition,2014,126(46),12730.55 Zhu E B, Li Y J, Chiu C Y, et al. Nano Research,2016,9(1),149.56 Chen J Y, Benjamin W, Joseph M, et al. Nano Letters,2005,5,2058.57 Zhang L, Luke T R, Wang X, et al. Science,2015,349,412.58 Bu L Z, Guo S J, Zhang X , et al. Nature Communications,2016,7,1.59 Jiang B, Li C L, Henzie J, et al. Journal of Materials Chemistry A,2016,4(17),6465.60 Qu J L, Ye F, Chen D, et al. J. Advances in Colloid and Interface Science,2016,230,29. 61 Zhang H, Jin M S, Wang J G, et al. Journal of the American Chemical Society,2011,133(27),10422.62 Fan N N, Yang Y, Wang W F, et al. ACS Nano,2012,6,4072.63 González E, Merkoçi F, Arenal R, et al. Journal of Materials Chemistry A,2016,4(1),200.64 Lu Y , Song Y J, Liu H Y, et al. Acta Physico-Chimica Sinica,2017,33(2),283(in Chinese).吕洋,宋玉江,刘会园,等.物理化学学报,2017,33(2),283. 65 Zhang Z L,Yuan J N, Sun Y P , et al. Journal of Inorganic Chemistry,2011,27(12),2413(in Chinese). 张忠林,员娟宁,孙彦平,等.无机化学学报,2011,27(12),2413.66 Chang Q W, Xiao F, Xue Y, et al. Acta Physico-Chimica Sinica,2017,33(1),9(in Chinese).常乔婉,肖菲,徐源,等.物理化学学报,2017,33(1),9. 67 Erikson H, Sarapuu A, Alexeyeva N, et al. Electrochimica Acta,2012,59,329.68 Koenigsmann C, Santulli A C, Gong K, et al. Journal of the American Chemical Society,2011,133(25),9783.69 Adžić R R, Strbac S, Anastasijevic N. Materials Chemistry and Physics,1989,22,349.70 Shao M, Peles A, Shoemaker K, et al. The Journal of Physical Chemistry Letters,2011,2(2),67.71 Li S H, Wang A J, Hu Y Y, et al. Journal of Materials Chemistry A,2014,2(43),18177.72 Sekol R C, Li X, Cohen P, et al. Applied Catalysis B, Environmental,2013,138-139,285.73 Liu B Z, Wang L M. Russian Journal of Electrochemistry,2013,50(5),476.74 Yi Q F, Niu F J, Li L, et al. Journal of Electroanalytical Chemistry,2011,654(1-2),60.75 Singh P, Buttry D A. Journal of Materials Chemistry C,2012,116(19),10656.76 Wang Q Y, Cui X Q, Guan W M, et al. Journal of Power Sources,2014,269,152.77 Tsai Y L, Huang K L, Yang C C, et al. International Journal of Hydrogen Energy,2014,39(11),5528.78 Luo S P, Tang M, Shen P K, et al. Advanced Materials,2016,29(8),1601687.79 Xiong Y J, Wiley Benjamin, Chen J Y, et al. Angewandte Chemie International Edition,2005,44(48),7913. 80 Zhang N, Bu L Z, Guo S J, et al. Nano Letters,2016,16(8),5037.81 Zhang N, Guo S J, Zhu X, et al. Chemistry of Materials,2016,28(12),4447.
[1] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[2] 周璐, 马红和, 马素霞, 杜慧娟. 用于太阳能集热介质的纳米铜制备技术与铜纳米流体性能综述[J]. 材料导报, 2018, 32(15): 2576-2583.
[3] 汪广进, 程凡, 徐甜, 余意, 文胜, 龚春丽, 刘海, 汪杰, 郑根稳, 潘牧. 二次烧结气氛对La0.7Sr0.3MnO3氧还原催化活性的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 33-36.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed