Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1257-1261    https://doi.org/10.11896/cldb.17120029
  无机非金属及其复合材料 |
一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能
王亚军, 郭梁, 李泽雪
北京理工大学爆炸科学与技术国家重点实验室,北京 100081
Synthesis of 3D Hierarchical Flower-like α-Bi2O3 Microsphere by One-step Precipitation Method and Its Optical Property
WANG Yajun, GUO Liang, LI Zexue
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081
下载:  全 文 ( PDF ) ( 2253KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以乙醇-水为溶剂体系、丙三醇为封端剂,在低温(95 ℃)及常压下,采用水相一步沉淀法,以Bi(NO3)3·5H2O为铋源、NaOH为沉淀剂,反应1 h制备出两种三维分等级花状α-Bi2O3微球。采用X射线衍射仪(XRD)和场发射扫描电子显微镜镜(FE-SEM)表征Bi2O3样品的晶型和微观形貌。结果表明,样品均为α相,尺度在微米级,随丙三醇浓度不同,微观形貌分别为纳米立方体3D自组装分等级花状微球和一维纳米棒自组装分等级花状微球。初步分析了特殊微观形貌形成的机理。紫外-可见光谱(UV-Vis)分析表明,样品均在紫外-可见光区有显著的光吸收,两种样品的禁带宽度分别为2.76 eV和2.70 eV,属于电子从价带跃迁到导带引起的吸收,为Bi2O3的直接带隙吸收。荧光光谱(PL)分析表明,样品在400~600 nm均具有五个发射谱带(谱带中心位于450 nm、466 nm、480 nm、490 nm和562 nm处)。微观形貌影响荧光发射谱带的波形与强度,纳米棒自组装而成的花状分等级微球的荧光强度稍弱。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王亚军
郭梁
李泽雪
关键词:  α-氧化铋  分等级结构  液相沉淀法  形貌控制  光性能    
Abstract: Three-dimensional (3D) hierarchical constructed flower-like α-Bi2O3 microspheres were prepared successfully via a simple solution precipita-tion method at 95 ℃ and ambient atmospheric pressure in 1 h. The synthesis process was operated in an ethanol-water system as solvent with the assistance of glycerol as capping agent. X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM) were employed to characterize the obtained products. The samples were all α phase with diameter of micrometer scale. With different concentration of glycerol, Bi2O3 shows different microstructures. When glycerol concentration was low, the product was nanocubes 3D self-assembled hierarchical flower-like microspheres, while at high glycerol concentration, the one-dimensional nanorods self-assembled hierarchical flower-like microspheres were obtained. The formation mechanism of the special micro-morphology was also analyzed. UV-visible diffuse reflectance spectrum shows that the samples present photoabsorption property from UV light region to visible light range, belonging to the absorption caused by electron transition from valence band to conduction band, which is Bi2O3 direct band gap absorption. The band gaps of the Bi2O3 samples are estimated to be 2.76 eV and 2.70 eV. The fluorescence spectrum of the samples shows broad emission (400—600 nm) and five emission bands (band centers are located at 450 nm, 466 nm, 480 nm, 490 nm, and 562 nm). The waveform and intensity of the fluorescence emission bands were affected by the micro-morphology of the materials. And the fluorescence intensity of nanorods self-assembled hierarchical flower-like microspheres was slightly weaker.
Key words:  α-bismuth oxide    hierarchical structure    solution precipitation method    morphology control    optical property
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  O614.53+2  
  TQ567.8  
基金资助: 爆炸科学与技术国家重点实验室(北京理工大学)自主课题(YBKT14-09)
作者简介:  王亚军,北京理工大学讲师,硕士研究生导师,email: yajunwang@bit.edu.cn。2001年研究生毕业于北京理工大学机电工程学院留校至今。
引用本文:    
王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
WANG Yajun, GUO Liang, LI Zexue. Synthesis of 3D Hierarchical Flower-like α-Bi2O3 Microsphere by One-step Precipitation Method and Its Optical Property. Materials Reports, 2019, 33(8): 1257-1261.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17120029  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1257
1 Heaven M W, Cave G W, McKinlay R M, et al. Angewandte Chemie International Edition, 2006, 45(37), 6221.
2 Li H, Bian Z, Jian Z. Journal of the American Chemical Society, 2007, 129(27), 8406.
3 Zhou L, Wang W Z, Xu H L, et al. Chemistry—A European Journal, 2009, 15(7), 1776.
4 Tsai S Y, Fung K Z, Ni C T, et al. ECS Transactions, 2015, 68(1), 867.
5 Lv X W, Li Z J, Zhang J J, et al. Chemistry Letters, 2015, 44(1), 97.
6 Xie J, Li L, Tian C. Micro & Nano Letters, 2012, 7(7), 651.
7 Wang Y, Zhao J, Zhu Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 434, 296.
8 Wang Y, Zhao J, Zhou B, et al. Journal of Alloys and Compounds, 2014, 592, 296.
9 Zhang L, Hashimoto Y, Taishi T, et al. Applied Surface Science, 2011, 257(15), 6577.
10 Yu Z, Zhang J, Zhang H. Micro & Nano Letters, 2012, 7(8), 814.
11 Wang J L, Yang X D, Zhao K, et al. Journal of Materials Chemistry A, 2013, 1, 9069.
12 Liu X, Bian W, Tian C. Materials Letters, 2013, 112, 1.
13 Tseng T K, Choi J, Jung D W, et al. ACS Applied Materials & Interfaces, 2010, 2(4), 943.
14 Jing H, Chen X, Jiang X. Micro & Nano Letters, 2011, 6, 196.
15 Gou X, Li R, Wang G, et al. Nanotechnology, 2009, 20(49), 495501.
16 Liu B, Zeng H. Journal of the American Chemical Society, 2004, 126(26), 8124.
17 Huo Z, Chen C, Li Y. Chemical Communications, 2006, 33(33), 3522.
18 Liu J, Li Y D. Advanced Materials, 2007, 19(8), 1118.
19 Wang Y. Distinctive microstructures of bismuth (Ⅲ) oxide:Solution synthesis, growth mechanism and optical properties. Ph.D. Thesis, Jilin University, China, 2014(in Chinese).
王轶. 特殊结构氧化铋的液相合成、生长机理与光学性能. 博士学位论文, 吉林大学, 2014.
20 Blasse G, Hao Z. Materials Research Bulletin, 1984, 19(84), 1057.
21 Vila M, Díaz-Guerra C, Piqueras J. Materials Chemistry & Physics, 2012, 133(1), 559.
22 Zorenko Y, Gorbenko V, Voznyak T, et al. Journal of Luminescence, 2010, 130(10), 1963.
23 Srivastava A M. Journal of Luminescence, 1998, 78(4), 239.
24 Gaft M, Reisfeld R, Panczer G, et al. Optical Materials, 2001, 16(1), 279.
25 Kumari L, Lin J H, Ma Y R. Journal of Physics Condensed Matter, 2007, 19(40), 406204.
[1] 李梦萱, 刘洪波, 刘见祥, 朱明燕, 王毅. 掺杂Yb3+的氟氧化物微晶玻璃的析晶特性及发光性能[J]. 材料导报, 2019, 33(16): 2644-2647.
[2] 张晓英,周梓良,杨伟光,王锋. 掺Eu2+蓝光长余辉材料发光性能影响因素[J]. 材料导报, 2019, 33(15): 2497-2504.
[3] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[4] 周璐, 马红和, 马素霞, 杜慧娟. 用于太阳能集热介质的纳米铜制备技术与铜纳米流体性能综述[J]. 材料导报, 2018, 32(15): 2576-2583.
[5] 张礼华,张云升,殷倩文. Li2O/K2O物质的量比对P2O5-Al2O3-BaO-Li2O-K2O磷酸盐玻璃热光性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 1955-1958.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed