Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2497-2504    https://doi.org/10.11896/cldb.18060211
  无机非金属及其复合材料 |
掺Eu2+蓝光长余辉材料发光性能影响因素
张晓英1,2,周梓良1,杨伟光1,王锋1
1.重庆交通大学材料科学与工程学院,重庆 400074
2.中国工程物理研究院化工材料研究所四川省新材料研究中心,成都 610200
Factors Affecting the Luminescence Properties of Blue Long Afterglow Materials Doped with Eu2+
ZHANG Xiaoying1,2, ZHOU Ziliang1, YANG Weiguang1, WANG Feng1
1.School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074
2.Sichuan Research Center of New Material of Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200
下载:  全 文 ( PDF ) ( 1459KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 从20世纪80年代发展至今,蓝光长余辉材料依次经过硫化物、铝酸盐、硅酸盐、发光二极管转换荧光粉等基质材料掺杂稀土元素合成的四代长余辉材料,越来越优异的夜光性能使蓝光长余辉材料逐步满足使用要求并广泛应用于显示、检测及能源转换等各个领域。
目前,蓝光长余辉材料急需解决的问题是提高第四代材料的使用寿命和发光强度,结合本身的高发光效率和高稳定性优势,以期满足更多实际需求。寿命和发光强度是长期以来长余辉材料的研究热点,影响这两项发光性能的宏观因素包含碱土元素的种类与含量、稀土掺杂元素的种类与含量、助溶剂的种类与含量、制备方法与条件及其他影响因素等。碱土元素种类与含量会明显改变长余辉材料的发射波长及寿命,稀土掺杂元素在不同的基质材料中掺入的元素种类和含量是不同的,助溶剂中最常用且效果相对较好的是硼酸。长余辉材料最常用的制备方法是高温固相法,虽然产物晶粒较大,但其工艺简单、产物稳定、发光性能较好;湿化学法产物晶粒虽小但产物量少、易团聚且合成过程复杂,合成时间相对较长;燃烧法、微波合成法、激光合成法虽合成时间短,但合成参数不易掌握。未来,长余辉材料可能会以Eu2+和其他稀土元素共掺的方式,并结合多种制备方法,合成寿命更长、强度更高的材料。
除了发光性能外,蓝光长余辉材料的发光机制也是学术界关注的重要问题。长余辉材料的早期微观机制模型包含以空穴为主要电荷载体的Eu2+单掺Abbruscato模型与Eu2+、Dy3+共掺Matsuzawa模型,以及以电子为主要电荷载体的Dorenbos模型与Clabau模型。Aitasalo模型综合了Dorenbos和Clabau等在陷阱来源方面的观点,H?ls?团队采用同步辐射测量技术得到了与Aitasalo模型相符的实验结果。但蓝光长余辉材料主要电荷载体的问题一直存在争议,且以上模型都未描述除主要的电荷载体外剩余空穴或电子的去向,直到2017年,Li等提出三掺杂铝酸锶材料发光机理模型,不仅同时考虑了电子与空穴这两种电荷载体,而且描述了本征载流子和掺杂离子这两种缺陷陷阱,但他们并未说明氧空穴和掺杂离子提供陷阱的比例,同时还缺乏电子或空穴被捕获的位置及相应是被哪种陷阱捕获等细节的实验证据,这些问题都需要电子顺磁共振和同步辐射等测量技术进一步提供数据支撑。此外,明确发光机制也有助于指导实验,提高蓝光长余辉材料的发光性能。
本文归纳了具有代表性的掺Eu2+蓝光长余辉材料,分析了影响其发光性能的宏观因素以及被普遍认可的发光机制,以期为蓝光长余辉材料的后续研究和应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓英
周梓良
杨伟光
王锋
关键词:  长余辉材料  掺Eu2+  蓝光  发光性能    
Abstract: Since 1980s, four generations of blue long afterglow materials have been synthesized by doping rare earth elements into sulfides, aluminate, silicate, and light-emitting diode conversion phosphors host materials. With increasing quality of luminescent properties, blue long afterglow materials gradually meet the requirements and have been widely applied in many fields, such as display, detection, energy conversion and so on.
At present, the urgent problem that blue long afterglow materials need to be solved is to improve the lifetime and luminous intensity of the fourth generation materials, and combined with their own high luminous efficiency and high stability to meet more practical needs. Lifetime and luminous intensity have also been the focus of research for a long time. The macro factors affecting these two luminescent properties include the types and contents of alkali soil elements, doped rare earth elements, flux agents, preparation methods and conditions, etc. The emission wavelength and lifetime of the long afterglow materials are obviously changed by the first factors. The types and contents of doped rare earth elements are different in every host material. Boric acid is the most commonly used and relatively effective in the fluxes. Although the product grain is large, the high temperature solid state method is more widely used, due to its simpler process, more stable product, and better luminescent property. The pro-duct of wet chemical methods have small grain size but less product quantity, which is easy to agglomerate, the synthesis process is complex, and the synthesis time is relatively long. Although the synthesis time of combustion method, microwave synthesis method and laser synthesis method is short, but the synthesis parameters are difficult to master. In the future, the preparation of long afterglow materials may be co-doped with Eu2+ and other rare earth elements, and combined by a variety of methods in order to synthesize materials with longer life and higher intensity.
In addition to luminescent properties, the luminescence mechanism of blue long afterglow materials is also an important concern in academia. The early mechanism models of long afterglow materials includes Abbruscato model doped Eu2+ and Matsuzawa model doped Eu2+ and Dy3+, whose holes are assumed to be the main charge carriers. The Dorenbos model of rare earth ions with trap and the Clabau model of the oxygen vacancy with trap, whose electrons are the main charge carriers. The Aitasalo model of the blue long afterglow materials is integrated the trap sources of Dorenbos and Clabau et al, and the Aitasalo model is consistent with the results of H?ls? team by synchrotron radiation measurement. However, the main charge carriers are always controversial. At the same time, the above models have not described the remaining holes or electrons except the main charge carriers. Until 2017, Li et al. have proposed a luminescence mechanism model of strontium aluminate doped three rare earth elements, which not only considers the two charge carriers, electrons and holes, but also describes the two kinds of traps, intrinsic carrier and doping ions. But the model does not explain the ratio of oxygen vacancies traps to doping ions traps, and no experimental evidence about the position where the electrons or holes are captured in detail, and which traps capture them. Those facts require further data support such as electronic paramagnetic resonance and synchrotron radiation. At the same time, the clear mechanism is also helpful to guide the experiment for improvement of luminescence performance.
This paper summarizes the representative Eu2+ blue persistent luminescent materials, and analyzes the macroscopic factors affecting their luminescence properties and the generally accepted micro mechanism, in order to provide reference for the subsequent research and application of long afterglow materials.
Key words:  long afterglow materials    Eu2+-doped    blue    luminescent properties
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  O482.31  
  O734+.3  
基金资助: 重庆市科委基础科学与前沿项目(cstc2016jcyjA0582/cstc2015jcyjA50011);重庆市教委项目(KJ1500522);重庆交通大学交通土建工程材料国家地方联合工程实验室开放基金项目(LHSYS-2016-06)
作者简介:  张晓英,2016年6月毕业于宜宾学院,获得理学学士学位。现为重庆交通大学材料科学与工程学院硕士研究生,在王锋教授的指导下进行研究。目前主要研究方向为蓝光长余辉材料的制备与应用。
王锋,重庆交通大学材料科学与工程学院教授、硕士研究生导师,重庆市青年骨干教师。2002年7月本科毕业于四川师范学院物理系,2008年7月在四川大学原子与分子物理研究所原子与分子物理专业取得博士学位,2008—2010年中国工程物理研究院激光聚变研究中心进行博士后研究工作。近年来,在微纳功能薄膜制备与应用、发光材料以及计算材料科学等领域发表论文30余篇,包括Journal of Alloys and Compounds, Journal of Nuclear Materials, Journal of Physics and Chemistry of Solids, Journal of Crystal Growth等。
引用本文:    
张晓英,周梓良,杨伟光,王锋. 掺Eu2+蓝光长余辉材料发光性能影响因素[J]. 材料导报, 2019, 33(15): 2497-2504.
ZHANG Xiaoying, ZHOU Ziliang, YANG Weiguang, WANG Feng. Factors Affecting the Luminescence Properties of Blue Long Afterglow Materials Doped with Eu2+. Materials Reports, 2019, 33(15): 2497-2504.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060211  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2497
[1] Arras J, Br?se S. ChemPhotoChem,2018,2(2),55.
[2] Gao Y, He B, Xiao M, et al. Construction and Building Materials,2018,165,548.
[3] Guo H, Wang Y, Chen W, et al. Journal of Materials Chemistry C,2015,3(42),11212.
[4] Can-Uc B, Montes-Frausto J B, Juarez-Moreno K, et al. Journal of Biophotonics,2018,11(6),201700301
[5] Sharma V, Das A, Kumar V, et al. Physica B: Condensed Matter,2018,535,149.
[6] Tang J Y, Xie W J, Huang K, et al. Electrochemical and Solid-State Letters,2011,14(8),45.
[7] García C R, Oliva J, Romero M T, et al. Photochemistry and Photobiology,2016,92(2),231.
[8] Gao Y, He B, Xiao M, et al. Construction and Building Materials,2018,165,548.
[9] Lastusaari M, Bos A J J, Dorenbos P, et al. Journal of Thermal Analysis and Calorimetry,2015,121(1),29.
[10] Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 2nd ed, Cambridge University Press, Cambridge, UK,2003.
[11] Ding L F, Jiang X Y, Zhang, Z L, et al. Chinese Journal of Luminescence,1989,3,012.
[12] Horoz S. Superlattices and Microstructures,2017,111,1043.
[13] Lin Y, Tang Z, Zhang Z. Materials Letters,2001,51(1),14.
[14] Lin Y, Tang Z, Zhang Z, et al. Applied Physics Letters,2002,81(6),996.
[15] Aydin I, Ertekin K, Demirci S, et al. Optical Materials,2016,62,285.
[16] Demirci S, Gültekin S, Akalin S A, et al. Materials Science in Semiconductor Processing,2015,31,611.
[17] Liu B, Shi C, Yin M, et al. Journal of Alloys and Compounds,2005,387(1-2),65.
[18] Pang R, Li C, Shi L, et al. Journal of Physics and Chemistry of Solids,2009,70(2),303.
[19] Xiao W, Zhang X, Hao Z, et al. Inorganic Chemistry,2015,54(7),3189.
[20] Xu H B, Zhuang W D, Wang L, et al. Inorganic Chemistry,2017,56(22),14170.
[21] Poelman D, Avci N, Smet P F. Optics Express,2009,17(1),358.
[22] Luitel H N, Watari T, Torikai T, et al. Applied Surface Science,2010,256(8),2347.
[23] Emen F M, Kafadar V E, Kulcu N, et al. Journal of Luminescence,2013,144,133.
[24] He L, Jia B, Che L, et al. Journal of Luminescence,2016,172,317.
[25] Souza N R S, Silva D C, Sampaio D V, et al. Optical Materials,2017,68,2.
[26] Cui T, Ma P, Sheng Y, et al. Optical Materials,2017,67,84.
[27] Yu Y, Wang J, Wang J D, et al. Journal of Rare Earths,2017,35(7),652.
[28] Alvani A A S, Moztarzadeh F, Sarabi A A. Journal of Luminescence,2005,114(2),131.
[29] Pan W, Wang N H, Li G F, et al. Materials Science Forum,2011,675,1089.
[30] Ju G, Hu Y, Chen L, et al. Materials Research Bulletin,2013,48(11),4743.
[31] Pang R, Li C, Zhang S, et al. Materials Chemistry and Physics,2009,113(1),215.
[32] Kuang J, Liu Y, Zhang J, et al. Solid State Communications,2005,136(1),6.
[33] Lin Y, Zhang Z, Tang Z, et al. Journal of the European Ceramic Society,2001,21(5),683.
[34] Jiang L, Chang C, Mao D, et al. Journal of Alloys and Compounds,2004,377(1-2),211.
[35] Chandrakar P, Baghel R N, Bisen D P, et al. Luminescence,2016,31(1),164.
[36] Ran Z, Ran P, Haifeng L I, et al. Journal of Rare Earths,2014,32(9),797.
[37] Li C, Su Q. Journal of Alloys and Compounds,2006,408,875.
[38] Wu C, Zhang J, Feng P, et al. Journal of Luminescence,2014,147,229.
[39] Jiang L, Chang C, Mao D, et al. Materials Letters,2004,58(12-13),1825.
[40] Lin Y, Tang Z, Zhang Z, et al. Journal of Alloys and Compounds,2003,348(1-2),76.
[41] Mirhabibi A R, Moztarzadeh F, Aghajani Bazazi A, et al. Pigment & Resin Technology,2004,33(4),220.
[42] Lin Y, Tang Z, Zhang Z, et al. Journal of Materials Science Letters,2001,20(16),1505.
[43] Jüstel T, Bechtel H, Mayr W, et al. Journal of Luminescence,2003,104(1-2),137.
[44] Sahu I P, Bisen D P, Brahme N, et al. Research on Chemical Interme-diates,2015,41(19),6649.
[45] Van den Eeckhout K, Smet P F, Poelman D. Materials,2010,3(4),2536.
[46] Lin Y, Zhang Z, Tang Z, et al. Materials Chemistry and Physics,2001,70(2),156.
[47] Finley E, Cobb A, Duke A, et al. ACS Applied Materials & Interfaces,2016,8(40),26956.
[48] Lin Y, Tang Z, Zhang Z, et al. Journal of the European Ceramic Society,2003,23(1),175.
[49] Wako A H, Dejene B F, Swart H C. Physica B: Condensed Matter,2014,439,153.
[50] Lin Y, Tang Z, Zhang Z. Materials Letters,2001,51(1),14.
[51] Hai O, Jiang H, Xu D, et al. Journal of Wuhan University of Technology Materials Science,2016,31(2),269.
[52] Takeda T, Takahashi K, Uheda K, et al. Journal of the Japan Society of Powder and Powder Metallurgy,2002,49(12),1128.
[53] Wako A H, Dejene B F, Swart H C. Physica B: Condensed Matter,2014,439,160.
[54] Maghsoudipour A, Hassan Sarrafi M, Moztarzadeh F, et al. Pigment & Resin Technology,2010,39(1),32.
[55] Kaya S Y, Karasu B, Kaya G, et al. Advances in Science and Technology,2010,62,88.
[56] Zhang B, Zhao C, Chen D. Luminescence,2010,25(1),25.
[57] Zhai Y Q, Chen J, Wang L L, et al. Asian Journal of Chemistry,2013,25(11),6247.
[58] Wei Z, Xinxu M, Zhang M, et al. Journal of Rare Earths,2015,33(7),700.
[59] Wako A H, Dejene B F, Swart H C. Physica B: Condensed Matter,2014,439,160.
[60] Liu W R, Lei B. Journal of Nanoscience and Nanotechnology,2018,18(1),374.
[61] Jin Y, Long X Y, Zhu Y N, et al. Journal of Rare Earths,2016,34(12),1206.
[62] Fartode S A, Singh V, Dhoble S J. Defect and Diffusion Forum,2015,361,177.
[63] Zhang S H, Jiang L Y, Zhang J, et al. Journal of the Chinese Society of Rare Earths,2012,5,011.
[64] Jing X, Zhu D, Han T, et al. Chinese Journal of Luminescence,2013,34,836.
[65] Meng X K, Tan J, Lei T, et al. Chinese Journal of Inorganic Chemistry,2012,28,893.
[66] Yin L J, Yu W, Xu X, et al. Journal of the American Ceramic Society,2011,94(11),3842.
[67] Chandrakar P, Baghel R N, Bisen D P, et al. Luminescence,2015,30(7),1034.
[68] Hsu K T, Lin P C, Maggay I V B, et al. Materials Express,2015,5(3),255.
[69] Qiao X, Seo H J. Journal of the American Ceramic Society,2015,98,594.
[70] Ran Z, Ran P, Haifeng L I, et al. Journal of Rare Earths, 2014, 32(9), 797.
[71] Qiao X, Wang J, Huang Y, et al. Journal of the American Ceramic Society,2014,97(11),3561.
[72] Le F, Wang L, Jia W, et al. Journal of Alloys and Compounds,2012,512(1),323.
[73] Sahu I P, Bisen D P, Brahme N, et al. Luminescence,2015,30(8),1318.
[74] Zou H, Yan M, Wang G, et al. Powder Technology,2014,254,579.
[75] Chang C, Xu J, Jiang L, et al. Materials Chemistry and Physics,2006,98(2-3),509.
[76] Van Bui H, Nguyen T, Nguyen M C, et al. Advances in Natural Sciences: Nanoscience and Nanotechnology,2015,6(3),035013.
[77] Rivera-Medina M J, Hernández-Torres J, Boldú-Olaizola J L, et al. RSC Advances,2016,6(109),107613.
[78] Kim B J, Hasan Z, Kim J S. Journal of Ceramic Processing Research,2013,14(5),601.
[79] Xia Z, Du H, Sun J, et al. Materials Chemistry and Physics,2010,119(1-2),7.
[80] Bharat L K, Park J Y, Yu J S. Chemical Engineering Journal,2014,240,179.
[81] Jie S, Xiao X, Na Z, et al. Journal of the Chinese Rare Earth Society,2011,1,017.
[82] Song Y, You H, Yang M, et al. Inorganic Chemistry,2010,49(4),1674.
[83] Yu S, Wang D, Wu C, et al. Materials Research Bulletin,2017,93,83.
[84] Pan W, Ning G, Zhang X, et al. Journal of Luminescence,2008,128(12),1975.
[85] Li X, Zhang H, Tang A, et al. Journal of Nanoscience and Nanotechnology,2016,16(4),3468.
[86] Geng K, Xia Z, Molokeev M S. Dalton Transactions,2014,43(37),14092.
[87] Lee S H, Koo H Y, Jung D S, et al. Ceramics International,2009,35(7),2651.
[88] Jung H K, Lee D W, Jung K Y, et al. Journal of Alloys and Compounds,2005,390(1-2),189.
[89] Sharma V, Das A, Kumar V, et al. Physica B: Condensed Matter,2017,535(15),149.
[90] Pawade V B, Dhoble N S, Dhoble S J. Journal of Rare Earths,2014,32(7),593.
[91] Yerpude A N, Dhoble S J, Haranath D. Luminescence,2013,28(4),437.
[92] Pan L, Liu S, Zhang X, et al. Journal of Alloys & Compounds,2018,737,39.
[93] Song H, Liu W. Rare Metal Materials & Engineering,2008,37(7),1167.
[94] Aitasalo T, H?ls? J, Jungner H, et al. Journal of Alloys and Compounds,2002,341(1-2),76.
[95] Aitasalo T, H?ls? J, Jungner H, et al. Optical Materials,2004,26(2),113.
[96] Qiu Z, Zhou Y, Lü M, et al. Acta Materialia,2007,55(8),2615.
[97 ] Yu Y, Wang J, Wang J D, et al. Journal of Rare Earths,2017,35(7),652.
[98] Wei X, Fan J, Zhou X, et al. Transactions of the Indian Ceramic Society,2017,76(1),50.
[99] Huang W J, Su Y H, Kung P Y, et al. Optical and Quantum Electronics,2017,49(7),2511.
[100] Hai O, Jiang H, Zhang Q, et al. Luminescence,2017,32(8),1442.
[101] Homayoni H, Sahi S, Ma L, et al. Journal of Luminescence,2018,198,132.
[102] Hai O, Jiang H, Xu D, et al. Materials Research Bulletin,2016,76,358.
[103] Kaya S Y, Karacaoglu E, Karasu B. Advances in Applied Ceramics,2012,111(7),393.
[104] Hai O, Jiang H, Xu D, et al. Materials Research Bulletin,2016,76,358.
[105] Matsuzawa T, Aoki Y, Takeuchi N, et al. Journal of the Electrochemical Society,1996,143(8),2670.
[106] Abbruscato V. Journal of The Electrochemical Society,1971,118(6),930.
[107] Dorenbos P. Journal of the Electrochemical Society,2005,152(7),107.
[108] Nakazawa E, Mochida T. Journal of Luminescence,1997,72,236.
[109] Dorenbos P. Journal of Physics: Condensed Matter,2003,15(49),8417.
[110] Clabau F, Rocquefelte X, Jobic S, et al. Solid State Sciences,2007,9(7),608.
[111] Clabau F, Rocquefelte X, Jobic S, et al. Chemistry of Materials,2005,17(15),3904.
[112] Clabau F, Rocquefelte X, Le Mercier T, et al. Chemistry of Materials,2006,18(14),3212.
[113] H?ls? J, Aitasalo T, Jungner H, et al. Journal of Alloys and Compounds,2004,374(1-2),56.
[114] Aitasalo T, H?ls? J, Jungner H, et al. The Journal of Physical Chemistry B,2006,110(10),4589.
[115] H?ls? J, Laamanen T, Lastusaari M, et al. Spectrochimica Acta Part B: Atomic Spectroscopy,2010,65(4),301.
[116] Zhang X, Wang L. Chalcogenide Letters,2015,12(9),435.
[117] Qi Z, Shi C, Liu M, et al. Physica Status Solidi (A),2004,201(14),3109.
[118] Carlson S, H?ls? J, Laamanen T, et al. Optical Materials,2009,31(12),1877.
[119] Li F, Li Z, Wang X, et al. Journal of Alloys and Compounds,2017,692,10.
[120] H?ppe H A. Angewandte Chemie International Edition,2009,48(20),3572.[
[1] Arras J, Br?se S. ChemPhotoChem,2018,2(2),55.
[2] Gao Y, He B, Xiao M, et al. Construction and Building Materials,2018,165,548.
[3] Guo H, Wang Y, Chen W, et al. Journal of Materials Chemistry C,2015,3(42),11212.
[4] Can-Uc B, Montes-Frausto J B, Juarez-Moreno K, et al. Journal of Biophotonics,2018,11(6),201700301
[5] Sharma V, Das A, Kumar V, et al. Physica B: Condensed Matter,2018,535,149.
[6] Tang J Y, Xie W J, Huang K, et al. Electrochemical and Solid-State Letters,2011,14(8),45.
[7] García C R, Oliva J, Romero M T, et al. Photochemistry and Photobiology,2016,92(2),231.
[8] Gao Y, He B, Xiao M, et al. Construction and Building Materials,2018,165,548.
[9] Lastusaari M, Bos A J J, Dorenbos P, et al. Journal of Thermal Analysis and Calorimetry,2015,121(1),29.
[10] Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 2nd ed, Cambridge University Press, Cambridge, UK,2003.
[11] Ding L F, Jiang X Y, Zhang, Z L, et al. Chinese Journal of Luminescence,1989,3,012.
[12] Horoz S. Superlattices and Microstructures,2017,111,1043.
[13] Lin Y, Tang Z, Zhang Z. Materials Letters,2001,51(1),14.
[14] Lin Y, Tang Z, Zhang Z, et al. Applied Physics Letters,2002,81(6),996.
[15] Aydin I, Ertekin K, Demirci S, et al. Optical Materials,2016,62,285.
[16] Demirci S, Gültekin S, Akalin S A, et al. Materials Science in Semiconductor Processing,2015,31,611.
[17] Liu B, Shi C, Yin M, et al. Journal of Alloys and Compounds,2005,387(1-2),65.
[18] Pang R, Li C, Shi L, et al. Journal of Physics and Chemistry of Solids,2009,70(2),303.
[19] Xiao W, Zhang X, Hao Z, et al. Inorganic Chemistry,2015,54(7),3189.
[20] Xu H B, Zhuang W D, Wang L, et al. Inorganic Chemistry,2017,56(22),14170.
[21] Poelman D, Avci N, Smet P F. Optics Express,2009,17(1),358.
[22] Luitel H N, Watari T, Torikai T, et al. Applied Surface Science,2010,256(8),2347.
[23] Emen F M, Kafadar V E, Kulcu N, et al. Journal of Luminescence,2013,144,133.
[24] He L, Jia B, Che L, et al. Journal of Luminescence,2016,172,317.
[25] Souza N R S, Silva D C, Sampaio D V, et al. Optical Materials,2017,68,2.
[26] Cui T, Ma P, Sheng Y, et al. Optical Materials,2017,67,84.
[27] Yu Y, Wang J, Wang J D, et al. Journal of Rare Earths,2017,35(7),652.
[28] Alvani A A S, Moztarzadeh F, Sarabi A A. Journal of Luminescence,2005,114(2),131.
[29] Pan W, Wang N H, Li G F, et al. Materials Science Forum,2011,675,1089.
[30] Ju G, Hu Y, Chen L, et al. Materials Research Bulletin,2013,48(11),4743.
[31] Pang R, Li C, Zhang S, et al. Materials Chemistry and Physics,2009,113(1),215.
[32] Kuang J, Liu Y, Zhang J, et al. Solid State Communications,2005,136(1),6.
[33] Lin Y, Zhang Z, Tang Z, et al. Journal of the European Ceramic Society,2001,21(5),683.
[34] Jiang L, Chang C, Mao D, et al. Journal of Alloys and Compounds,2004,377(1-2),211.
[35] Chandrakar P, Baghel R N, Bisen D P, et al. Luminescence,2016,31(1),164.
[36] Ran Z, Ran P, Haifeng L I, et al. Journal of Rare Earths,2014,32(9),797.
[37] Li C, Su Q. Journal of Alloys and Compounds,2006,408,875.
[38] Wu C, Zhang J, Feng P, et al. Journal of Luminescence,2014,147,229.
[39] Jiang L, Chang C, Mao D, et al. Materials Letters,2004,58(12-13),1825.
[40] Lin Y, Tang Z, Zhang Z, et al. Journal of Alloys and Compounds,2003,348(1-2),76.
[41] Mirhabibi A R, Moztarzadeh F, Aghajani Bazazi A, et al. Pigment & Resin Technology,2004,33(4),220.
[42] Lin Y, Tang Z, Zhang Z, et al. Journal of Materials Science Letters,2001,20(16),1505.
[43] Jüstel T, Bechtel H, Mayr W, et al. Journal of Luminescence,2003,104(1-2),137.
[44] Sahu I P, Bisen D P, Brahme N, et al. Research on Chemical Interme-diates,2015,41(19),6649.
[45] Van den Eeckhout K, Smet P F, Poelman D. Materials,2010,3(4),2536.
[46] Lin Y, Zhang Z, Tang Z, et al. Materials Chemistry and Physics,2001,70(2),156.
[47] Finley E, Cobb A, Duke A, et al. ACS Applied Materials & Interfaces,2016,8(40),26956.
[48] Lin Y, Tang Z, Zhang Z, et al. Journal of the European Ceramic Society,2003,23(1),175.
[49] Wako A H, Dejene B F, Swart H C. Physica B: Condensed Matter,2014,439,153.
[50] Lin Y, Tang Z, Zhang Z. Materials Letters,2001,51(1),14.
[51] Hai O, Jiang H, Xu D, et al. Journal of Wuhan University of Technology Materials Science,2016,31(2),269.
[52] Takeda T, Takahashi K, Uheda K, et al. Journal of the Japan Society of Powder and Powder Metallurgy,2002,49(12),1128.
[53] Wako A H, Dejene B F, Swart H C. Physica B: Condensed Matter,2014,439,160.
[54] Maghsoudipour A, Hassan Sarrafi M, Moztarzadeh F, et al. Pigment & Resin Technology,2010,39(1),32.
[55] Kaya S Y, Karasu B, Kaya G, et al. Advances in Science and Technology,2010,62,88.
[56] Zhang B, Zhao C, Chen D. Luminescence,2010,25(1),25.
[57] Zhai Y Q, Chen J, Wang L L, et al. Asian Journal of Chemistry,2013,25(11),6247.
[58] Wei Z, Xinxu M, Zhang M, et al. Journal of Rare Earths,2015,33(7),700.
[59] Wako A H, Dejene B F, Swart H C. Physica B: Condensed Matter,2014,439,160.
[60] Liu W R, Lei B. Journal of Nanoscience and Nanotechnology,2018,18(1),374.
[61] Jin Y, Long X Y, Zhu Y N, et al. Journal of Rare Earths,2016,34(12),1206.
[62] Fartode S A, Singh V, Dhoble S J. Defect and Diffusion Forum,2015,361,177.
[63] Zhang S H, Jiang L Y, Zhang J, et al. Journal of the Chinese Society of Rare Earths,2012,5,011.
[64] Jing X, Zhu D, Han T, et al. Chinese Journal of Luminescence,2013,34,836.
[65] Meng X K, Tan J, Lei T, et al. Chinese Journal of Inorganic Chemistry,2012,28,893.
[66] Yin L J, Yu W, Xu X, et al. Journal of the American Ceramic Society,2011,94(11),3842.
[67] Chandrakar P, Baghel R N, Bisen D P, et al. Luminescence,2015,30(7),1034.
[68] Hsu K T, Lin P C, Maggay I V B, et al. Materials Express,2015,5(3),255.
[69] Qiao X, Seo H J. Journal of the American Ceramic Society,2015,98,594.
[70] Ran Z, Ran P, Haifeng L I, et al. Journal of Rare Earths, 2014, 32(9), 797.
[71] Qiao X, Wang J, Huang Y, et al. Journal of the American Ceramic Society,2014,97(11),3561.
[72] Le F, Wang L, Jia W, et al. Journal of Alloys and Compounds,2012,512(1),323.
[73] Sahu I P, Bisen D P, Brahme N, et al. Luminescence,2015,30(8),1318.
[74] Zou H, Yan M, Wang G, et al. Powder Technology,2014,254,579.
[75] Chang C, Xu J, Jiang L, et al. Materials Chemistry and Physics,2006,98(2-3),509.
[76] Van Bui H, Nguyen T, Nguyen M C, et al. Advances in Natural Sciences: Nanoscience and Nanotechnology,2015,6(3),035013.
[77] Rivera-Medina M J, Hernández-Torres J, Boldú-Olaizola J L, et al. RSC Advances,2016,6(109),107613.
[78] Kim B J, Hasan Z, Kim J S. Journal of Ceramic Processing Research,2013,14(5),601.
[79] Xia Z, Du H, Sun J, et al. Materials Chemistry and Physics,2010,119(1-2),7.
[80] Bharat L K, Park J Y, Yu J S. Chemical Engineering Journal,2014,240,179.
[81] Jie S, Xiao X, Na Z, et al. Journal of the Chinese Rare Earth Society,2011,1,017.
[82] Song Y, You H, Yang M, et al. Inorganic Chemistry,2010,49(4),1674.
[83] Yu S, Wang D, Wu C, et al. Materials Research Bulletin,2017,93,83.
[84] Pan W, Ning G, Zhang X, et al. Journal of Luminescence,2008,128(12),1975.
[85] Li X, Zhang H, Tang A, et al. Journal of Nanoscience and Nanotechnology,2016,16(4),3468.
[86] Geng K, Xia Z, Molokeev M S. Dalton Transactions,2014,43(37),14092.
[87] Lee S H, Koo H Y, Jung D S, et al. Ceramics International,2009,35(7),2651.
[88] Jung H K, Lee D W, Jung K Y, et al. Journal of Alloys and Compounds,2005,390(1-2),189.
[89] Sharma V, Das A, Kumar V, et al. Physica B: Condensed Matter,2017,535(15),149.
[90] Pawade V B, Dhoble N S, Dhoble S J. Journal of Rare Earths,2014,32(7),593.
[91] Yerpude A N, Dhoble S J, Haranath D. Luminescence,2013,28(4),437.
[92] Pan L, Liu S, Zhang X, et al. Journal of Alloys & Compounds,2018,737,39.
[93] Song H, Liu W. Rare Metal Materials & Engineering,2008,37(7),1167.
[94] Aitasalo T, H?ls? J, Jungner H, et al. Journal of Alloys and Compounds,2002,341(1-2),76.
[95] Aitasalo T, H?ls? J, Jungner H, et al. Optical Materials,2004,26(2),113.
[96] Qiu Z, Zhou Y, Lü M, et al. Acta Materialia,2007,55(8),2615.
[97 ] Yu Y, Wang J, Wang J D, et al. Journal of Rare Earths,2017,35(7),652.
[98] Wei X, Fan J, Zhou X, et al. Transactions of the Indian Ceramic Society,2017,76(1),50.
[99] Huang W J, Su Y H, Kung P Y, et al. Optical and Quantum Electronics,2017,49(7),2511.
[100] Hai O, Jiang H, Zhang Q, et al. Luminescence,2017,32(8),1442.
[101] Homayoni H, Sahi S, Ma L, et al. Journal of Luminescence,2018,198,132.
[102] Hai O, Jiang H, Xu D, et al. Materials Research Bulletin,2016,76,358.
[103] Kaya S Y, Karacaoglu E, Karasu B. Advances in Applied Ceramics,2012,111(7),393.
[104] Hai O, Jiang H, Xu D, et al. Materials Research Bulletin,2016,76,358.
[105] Matsuzawa T, Aoki Y, Takeuchi N, et al. Journal of the Electrochemical Society,1996,143(8),2670.
[106] Abbruscato V. Journal of The Electrochemical Society,1971,118(6),930.
[107] Dorenbos P. Journal of the Electrochemical Society,2005,152(7),107.
[108] Nakazawa E, Mochida T. Journal of Luminescence,1997,72,236.
[109] Dorenbos P. Journal of Physics: Condensed Matter,2003,15(49),8417.
[110] Clabau F, Rocquefelte X, Jobic S, et al. Solid State Sciences,2007,9(7),608.
[111] Clabau F, Rocquefelte X, Jobic S, et al. Chemistry of Materials,2005,17(15),3904.
[112] Clabau F, Rocquefelte X, Le Mercier T, et al. Chemistry of Materials,2006,18(14),3212.
[113] H?ls? J, Aitasalo T, Jungner H, et al. Journal of Alloys and Compounds,2004,374(1-2),56.
[114] Aitasalo T, H?ls? J, Jungner H, et al. The Journal of Physical Chemistry B,2006,110(10),4589.
[115] H?ls? J, Laamanen T, Lastusaari M, et al. Spectrochimica Acta Part B: Atomic Spectroscopy,2010,65(4),301.
[116] Zhang X, Wang L. Chalcogenide Letters,2015,12(9),435.
[117] Qi Z, Shi C, Liu M, et al. Physica Status Solidi (A),2004,201(14),3109.
[118] Carlson S, H?ls? J, Laamanen T, et al. Optical Materials,2009,31(12),1877.
[119] Li F, Li Z, Wang X, et al. Journal of Alloys and Compounds,2017,692,10.
[120] H?ppe H A. Angewandte Chemie International Edition,2009,48(20),3572.[
[1] 李梦萱, 刘洪波, 刘见祥, 朱明燕, 王毅. 掺杂Yb3+的氟氧化物微晶玻璃的析晶特性及发光性能[J]. 材料导报, 2019, 33(16): 2644-2647.
[2] 陈毕达, 甘贵生, 吴懿平, 区燕杰. 蓝光激发余辉型荧光粉的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 37-45.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed