Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3697-3705    https://doi.org/10.11896/j.issn.1005-023X.2018.21.003
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
超级电容器电解质研究进展
杨贺珍1, 冉奋1, 2
1 兰州理工大学材料科学与工程学院,兰州 730050;
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Progress in Research on Electrolytes for Supercapacitors
YANG Hezhen1, RAN Fen1, 2
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050;
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 1859KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电解质作为超级电容器的重要组成部分,对器件性能起着关键性作用。本文对近些年来超级电容器各种电解质,包括水系、有机液体、离子液体、固态/准固态聚合物电解质和氧化还原体系电解质的特点和最新研究成果进行了描述;重点介绍了固态/准固态聚合物电解质的分类及其性能研究概况。提出了发展电位窗口宽、离子电导率高、电化学性能稳定的离子液体和机械强度等综合性能优良的凝胶聚合物电解质是将来超级电容器电解质发展领域的趋势,最后对超级电容器电解质的发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨贺珍
冉奋
关键词:  超级电容器  电解质  离子电导率  固态/准固态聚合物电解质    
Abstract: As an important part of supercapacitors, electrolyte plays a key role in determining the performance of device. This review briefly discusses about the characteristics and the latest research results of the electrolytes including aqueous, organic liquid, ionic liquid, solid/quasi-solid polymer electrolyte and redox system for supercapacitors. The classification and property of solid/quasi-solid polymer electrolytes are focused, and put forward the development of wide potential window, high ionic conductivity, and stable electrochemical properties of ionic liquids and excellent mechanical strengths and comprehensive properties of gel polymer electrolytes are trends in the field of electrolytes for supercapacitors in the future. Finally, the development prospect of electrolytes for supercapacitors is proposed.
Key words:  supercapacitors    electrolytes    ionic conductivity    solid/quasi-solid polymer electrolytes
               出版日期:  2018-11-10      发布日期:  2018-11-21
ZTFLH:  TB324  
  TQ152  
基金资助: 国家自然科学基金(51203071; 51363014; 51463012; 51763014); 中国博士后科学基金(2014M552509; 2015T81064); 甘肃省自然科学基金(1506RJZA098); 兰州理工大学红柳杰出青年计划(J201402); 沈阳材料科学国家重点实验室与有色金属先进加工与再利用国家重点实验室联合资助(18LHPY002)
作者简介:  杨贺珍:女,1992生,硕士研究生,研究方向为超级电容器电解质材料 E-mail:2236243515@qq.com;冉奋:通信作者,副教授,博士研究生导师,从事新型能源材料和生物医用高分子材料的研究 E-mail:ranfen@163.com
引用本文:    
杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
YANG Hezhen, RAN Fen. Progress in Research on Electrolytes for Supercapacitors. Materials Reports, 2018, 32(21): 3697-3705.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.003  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3697
1 Zhong C, Deng Y, Hu W, et al.A review of electrolyte materials and compositions for electrochemical supercapacitors[J].Chemical Society Reviews,2015,44(21):7484.
2 Galiński M, Lewandowski A, Stępniak I.Ionic liquids as electrolytes[J].Electrochimica Acta,2006,51(26):5567.
3 Jiménez-Cordero D, Heras F, Gilarranz M A, et al.Grape seed carbons for studying the influence of texture on supercapacitor beha-viour in aqueous electrolytes[J].Carbon,2014,71(7):127.
4 Torchała K, Kierzek K, Machnikowski J.Capacitance behavior of KOH activated mesocarbon microbeads in different aqueous electrolytes[J].Electrochimica Acta,2012,86(4):260.
5 Zhang X, Wang X, Jiang L, et al.Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons[J].Journal of Power Sources,2012,216:290.
6 Yang H S, Zhou X,Jiang C L, et al.Recent advances in the study on electrochemical capacitors Ⅱ. Redox capacitors[J].Electronic Components & Materials,2003,22(3):38(in Chinese).
杨红生,周啸,姜翠玲,等.电化学电容器最新研究进展Ⅱ.氧化还原电容器[J].电子元件与材料,2003,22(3):38.
7 Patil U M, Salunkhe R R, Gurav K V, et al.Chemically deposited nanocrystalline NiO thin films for supercapacitor application[J].Applied Surface Science,2008,255(5):2603.
8 Tian Y, Yan J W, Xue R, et al.Influence of electrolyte concentration and temperature on the capacitance of activated carbon[J].Acta Physico-Chimica Sinica,2011,27(2):479.
9 Misnon I I, Aziz R A, Zain N K M, et al. High performance MnO2 nanoflower electrode and the relationship between solvated ion size and specific capacitance in highly conductive electrolytes[J].Mate-rials Research Bulletin,2014,57(23):221.
10 Yuan A, Zhang Q.A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte[J].Electrochemistry Communications,2006,8(7):1173.
11 Inamdar A I, Kim Y S, Pawar S M, et al.Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors[J].Journal of Power Sources,2011,196(4):2393.
12 Wang X, Yan Z, Pang H, et al.NH4CoPO4·H2O microflowers and porous Co2P2O7 microflowers: Effective electrochemical supercapacitor behavior in different alkaline electrolytes[J].International Journal of Electrochemical Science,2013,8(3):3768.
13 Wang R, Li Q, Cheng L, et al.Electrochemical properties of manganese ferrite-based supercapacitors in aqueous electrolyte: The effect of ionic radius[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2014,457(1):94.
14 Nithya V D, Selvan R K, Kalpana D, et al.Synthesis of Bi2WO6 nanoparticles and its electrochemical properties in different electrolytes for pseudocapacitor electrodes[J].Electrochimica Acta,2013,109(6):720.
15 Lang J W, Yan X B, Liu W W, et al.Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes[J].Journal of Power Sources,2012,204(1):220.
16 Wang D W, Li F, et al.Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions[J].Chemistry—A European Journal,2012,18:5345.
17 Xu C, Li B, Du H, et al.Supercapacitive studies on amorphous MnO2 in mild solutions[J].Journal of Power Sources,2008,184:691.
18 Xu C, Wei C, Li B, et al.Charge storage mechanism of manganese dioxide for capacitor application: Effect of the mild electrolytes containing alkaline and alkaline-earth metal cations[J].Journal of Power Sources,2011,196(18):7854.
19 Nose M, Nobuhara K, Shiotani S, et al.Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications[J].Journal of Power Sources,2008,178(1):483.
20 Li Siheng, Qi Li, Lu Lehui, et al.Facile preparation and perfor-mance of mesoporous manganese oxide for supercapacitors utilizing neutral aqueous electrolytes[J].RSC Advances,2012,2(8):3298.
21 Abbas Q, Ratajczak P, Babuchowska P, et al.Strategies to improve the performance of carbon/carbon capacitors in salt aqueous electrolytes[J].Journal of the Electrochemical Society,2015,162(5):5148.
22 Demarconnay L, Raymundo-Piñero E, Béguin F.A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution[J].Electrochemistry Communications,2010,12:1275.
23 Fic K, Lota G, Meller M, et al.Novel insight into neutral medium as electrolyte for high-voltage supercapacitors[J].Energy & Environmental Science,2012,5(2):5842.
24 Bouroushian M, Karoussos D, Kosanovic T.Photoelectrochemical properties of electrodeposited CdSe and CdSe/ZnSe thin films in sulphide-polysulphide and ferro-ferricyanide redox systems[J].Solid State Ionics,2006,177(19):1855.
25 Li Z P,Zhao J G,Wen Y Q,et al.Research progress of electrolytes in supercapacitors[J].Chemical Industry and Engineering Progress,2012(8):1631(in Chinese).
李作鹏,赵建国,温雅琼,等.超级电容器电解质研究进展[J].化工进展,2012(8):1631.
26 刘潇娟,杨光,廖红英,等.超级电容器电解质的研究进展[J].化学试剂,2013(6):510.
27 Wang G, Zhang L, Zhang J.A review of electrode materials for electrochemical supercapacitors[J].Chemical Society Reviews,2012,41(2):797.
28 Jung N, Kwon S, Lee D, et al.Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors[J].Advanced Materials,2013,25(47):6854.
29 Zhang Q, Rong J, et al.The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes[J].Energy & Environmental Science,2011,4(6):2152.
30 Souza R F D, Padilha J C, Gonçalves R S, et al. Electrochemical hydrogen production from water electrolysis using ionic liquid as electrolytes: Towards the best device[J].Journal of Power Sources,2007,164(2):792.
31 Wang Y, Song Y, Xia Y.Electrochemical capacitors: Mechanism, materials, systems, characterization and applications[J].Chemical Society Reviews,2016,45(21):5925.
32 Hung P J, Chang K H, Lee Y F, et al.Ideal asymmetric supercapacitors consisting of polyaniline nanofibers and graphene nanosheets with proper complementary potential windows[J].Electrochimica Acta,2010,55(20):6015.
33 Wang Z, Tammela P, StrãMme M, et al. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance[J].Nanoscale,2015,7(8):3418.
34 Kong C, Qian W, Zheng C, et al.Raising the performance of a 4 V supercapacitor based on an EMIBF4-single walled carbon nanotube nanofluid electrolyte[J].Chemical Communications,2013,49(91):10727.
35 Montanino M, Moreno M, et al.Physical and electrochemical pro-perties of binary ionic liquid mixtures: (1-x) PYR14TFSI-(x) PYR14IM14[J].Electrochimica Acta,2012,60(1):163.
36 Li F Q, Lan Y Q, et al.Research progress in ionic liquid electrolytes for supercapacitor[J].Battery Bimonthly,2008(1):63(in Chinese).
李凡群,赖延清,等.超级电容器用离子液体电解质的研究进展[J].电池,2008(1):63.
37 Zhou Q, Henderson W A, Appetecchi G B, et al.Physical and electrochemical properties of N-alkyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide ionic liquids: PY13FSI and PY14FSI[J].Journal of Physical Chemistry B,2008,112(43):13577.
38 Earle M J, Esperança J M, Gilea M A, et al.The distillation and volatility of ionic liquids[J].Nature,2006,439(7078):831.
39 Coadou E, Goodrich P, Neale A R, et al.Synthesis and thermophy-sical properties of ether-functionalized sulfonium Ionic Liquids as potential electrolytes for electrochemical applications[J].Chemphyschem A European Journal of Chemical Physics & Physical Chemistry,2016,17(23):3992.
40 Pohlmann S, Olyschläger T, et al.Mixtures of azepanium based io-nic liquids and propylene carbonate as high voltage electrolytes for supercapacitors[J].Electrochimica Acta,2015,153:426.
41 Tan Z, Chen G, Zhu Y.Carbon-based supercapacitors produced by the activation of graphene[J].Science,2011,332(6037):1537.
42 Kühnel R S, Böckenfeld N, Passerini S, et al.Mixtures of ionic li-quid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries[J].Electrochimica Acta,2011,56(11):4092.
43 Balducci A, Jeong S S, Kim G T, et al.Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project)[J].Journal of Power Sources,2011,196(22):9719.
44 Palm R, Kurig H, Tõnurist K, et al.Is the mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazo-lium tetrafluoroborate applicable as electrolyte in electrical double layer capacitors?[J].Electrochemistry Communications,2012,22(8):203.
45 Balducci A, Krause A, Menne S, et al.High voltage electrochemical double layer capacitors containing mixtures of ionic liquid and organic carbonate as electrolyte[J].Electrochemistry Communications,2011,13(8):814.
46 Tokuda H, Hayamizu K, Ishii K, et al.Physicochemical properties and structures of room temperature ionic liquids. 2.Variation of alkyl chain length in imidazolium cation[J].Journal of Physical Chemistry B,2005,109(13):6103.
47 Krynicki K, Green C D, Sawyer D W.Pressure and temperature dependence of self-diffusion in water[J].Faraday Discussions of the Chemical Society,1978,66(4):199.
48 Shim Y, Kim H J.Nanoporous carbon supercapacitors in an ionic li-quid: A computer simulation study[J].ACS Nano,2010,4(4):2345.
49 Mecerreyes D.Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes[J].Progress in Polymer Science,2011,36(12):1629.
50 Qian W, Texter J, Yan F.Frontiers in poly(ionic liquid)s: Syntheses and applications[J].Chemical Society Reviews,2017,46:1124.
51 Lewandowski A, Olejniczak A, Galinski M, et al.Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes[J].Journal of Power Sources,2010,195(17):5814.
52 Lv X J, Zhu P.Research progress in polymer electrolytes for supercapacitor[J].Micronanoelectronic Technology,2016(2):102(in Chinese).
吕晓静,朱平.超级电容器聚合物电解质的研究进展[J].微纳电子技术,2016(2):102.
53 Gray F M.Solid polymer electrolytes: Fundamentals and technological applications[M].Wiley-VCH Press, Germany,1991.
54 Fenton D E, Parker J M, Wright P V.Complexes of alkali metal ions with poly(ethylene oxide)[J].Polymer,1973,14(11):589.
55 Wright P V.Electrical conductivity in ionic complexes of poly (ethy-lene oxide)[J].Polymer International,2010,7(5):319.
56 Itoh T, Mitsuda Y, Ebina T, et al.Solid polymer electrolytes composed of polyanionic lithium salts and polyethers[J].Journal of Po-wer Sources,2009,189(1):531.
57 Berthier C, Gorecki W, Minier M, et al.Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts[J].Solid State Ionics,1983,11(1):91.
58 Baume N, Steel G, Edwards T, et al.No variation of physical performance and perceived exertion after adrenal gland stimulation by synthetic ACTH (Synacthen) in cyclists[J].European Journal of Applied Physiology,2008,104(4):589.
59 Yin J L, Zang B H.A review of the working electrolytes for supercapacitor[J].Applied Science and Technology,2004(10):46(in Chinese).
殷金玲,张宝宏.超级电容器工作电解质的研究概况[J].应用科技,2004(10):46.
60 Wang Q W, Xie D M.Progress in gel electrolyte[J].Progress in Chemistry,2002(3):167(in Chinese).
王庆伟,谢德民.凝胶电解质的研究进展[J].化学进展,2002(3):167.
61 Choi J A, Kang Y, Kim D W.Lithium polymer cell assembled by in situ chemical cross-linking of ionic liquid electrolyte with phosphazene-based cross-linking agent[J].Electrochimica Acta,2013,89(1):359.
62 Kamath K R, Park K.Biodegradable hydrogels for drug delivery[J].Advanced Drug Delivery Reviews,1993,11(1-2):59.
63 Yang C C.Polymer Ni-MH battery based on PEO-PVA-KOH polymer electrolyte[J].Journal of Power Sources,2002,109(1):22.
64 Yang C C, Lin S J.Preparation of composite alkaline polymer electrolyte[J].Materials Letters,2002,57(4):873.
65 Nohara S, Wada H, Furukawa N, et al.Electrochemical characte-rization of new electric double layer capacitor with polymer hydrogel electrolyte[J].Electrochimica Acta,2003,48(6):749.
66 Choudhury N A, Shukla A K, Sampath S, et al.Cross-linked polymer hydrogel electrolytes for electrochemical capacitors[J].Journal of the Electrochemical Society,2006,153(3):A614.
67 Lewandowski A, Zajder M, Béguin F.Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte[J].Electrochimica Acta,2001,46(18):2777.
68 Xu K Q, Wu J H, Fan L Q, et al.Progress in research on hydrogel polymer electrolytes for supercapacitors[J].Materials Review A: Review Papers,2011,25(8):27(in Chinese).
许开卿,吴季怀,范乐庆,等.水凝胶聚合物电解质超级电容器研究进展[J].材料导报:综述篇,2011,25(8):27.
69 Chen Y, Tan X S, Song H F, et al.Preparation and performance of quaternary ammonium salt gel polymer electrolyte for supercapacitor[J].Electronic Components and Materials,2017(7):48(in Chinese).
陈姚,谭晓珊,宋华峰,等.超级电容器用季铵盐凝胶聚合物电解质的制备及性能[J].电子元件与材料,2017(7):48.
70 Meng X L.Investigations on electrical double layer capacitors using gel polymer electrolytes[D].Harbin: Harbin Engineering University,2007(in Chinese).
孟祥利. 凝胶聚合物电解质双电层电容器的研究[D].哈尔滨:哈尔滨工程大学,2007.
71 Syahidah S N, Majid S R.Super-capacitive electro-chemical perfor-mance of polymer blend gel polymer electrolyte (GPE) in carbon-based electrical double-layer capacitors[J].Electrochimica Acta,2013,112:678.
72 Chen Q, Li X, Zang X, et al.Effect of different gel electrolytes on graphene-based solid-state supercapacitors[J].RSC Advances,2014,4(68):36253.
73 Kufian M Z, Majid S R, Arof A K.Dielectric and conduction mechanism studies of PVA-orthophosphoric acid polymer electrolyte[J].Ionics,2007,13(4):231.
74 Wang K, Zhang X, Li C, et al.Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance[J].Advanced Materials,2015,27(45):7451.
75 Choudhury N A, Sampath S, Shukla A K.Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors[J].Journal of the Electrochemical Society,2008,155(1):A74.
76 Xu K Q, Fan L Q, Wu J H, et al.Investigation of supercapacitors based on polyvinyl alcohol hydrogel-polymer electrolyte[J].Electrochemistry,2011,17(2):190(in Chinese).
许开卿,范乐庆,吴季怀,等.聚乙烯醇基水凝胶聚合物电解质超级电容器的研究[J].电化学,2011,17(2):190.
77 Huang Y, Zhong M, Huang Y, et al.A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte[J].Nature Communications,2015,6:10310.
78 Huang Y, Zhong M, Shi F, et al.An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte[J].Angewandte Chemie,2017,56(31):9141.
79 Peng X, Liu H, Yin Q, et al.A zwitterionic gel electrolyte for efficient solid-state supercapacitors[J].Nature Communications,2016,7:11782.
80 Lee G, Kim D, Kim D, et al.Fabrication of a stretchable and patc-hable array of high performance micro-supercapacitors using a non-aqueous solvent based gel electrolyte[J].Energy & Environmental Science,2015,8(6):1764.
81 Na R Q, Huo G, Zhang S, et al.A novel poly(ethylene glycol)-grafted poly(arylene ether ketone) blend micro-porous polymer electrolyte for solid-state electric double layer capacitors formed by incorporating a chitosan-based LiClO4 gel electrolyte[J].Journal of Materials Chemistry A,2016,4(46):18116.
82 Tang Q, Wang W, Wang G.Alkali-resistant quasi-solid-state electrolyte for stretchable supercapacitors[J].ACS Applied Materials & Interfaces,2016,8(41):27701.
83 Zhao D, et al.High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane[J].Advanced Energy Materials,2017,7:1700739.
84 Gao H, Lian K.Effect of SiO2 on silicotungstic acid-H3PO4-poly (vinyl alcohol) electrolyte for electrochemical supercapacitors[J].Journal of the Electrochemical Society,2013,160(3):A505.
85 Lim C S, Teoh K H, Liew C W, et al.Capacitive behavior studies on electrical double layer capacitor using poly (vinyl alcohol)-lithium perchlorate based polymer electrolyte incorporated with TiO2[J].Materials Chemistry & Physics,2014,143(2):661.
86 Lim C S, Teoh K H, Liew C W, et al.Electric double layer capacitor based on activated carbon electrode and biodegradable composite polymer electrolyte[J].Ionics,2014,20(2):251.
87 Huang Y F, Wu P F, Zhang M Q, et al.Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance[J].Electrochimica Acta,2014,132:103.
88 Rosi M, Iskandar F, Abdullah M, et al.Hydrogel-polymer electrolytes based on polyvinyl alcohol and hydroxyethylcellulose for supercapacitor applications[J].International Journal of Electrochemical Science,2014,9(8):4251.
89 Xia M.The preparation and investigation of electrolyte for supercapacitor applications[D].Chengdu: University of Electronic Science and Technology of China,2015(in Chinese).
夏曼. 基于超级电容器的电解质研究[D].成都:电子科技大学,2015.
90 Roldán S, Blanco C, Granda M, et al.Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes[J].Angewandte Chemie,2011,50(7):1699.
91 Senthilkumar S T, Selvan R K, Ponpandian N, et al.Redox additive aqueous polymer gel electrolyte for an electric double layer capacitor[J].RSC Advances,2012,2(24):8937.
92 Senthilkumar S T, Selvan R K, Ponpandian N, et al.Improved performance of electric double layer capacitor using redox additive (VO+2/VO+2) aqueous electrolyte[J].Journal of Materials Che-mistry A,2013,1(27):7913.
93 Mai L Q, Minhas-Khan A, Tian X, et al.Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance[J].Nature Communications,2013,4:2923.
94 Hwang J Y, Li M, El-Kady M F, et al. Next-generation activated carbon supercapacitors: A simple step in electrode processing leads to remarkable gains in energy density[J].Advanced Functional Materials,2017,27(15):1605745.
[1] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[2] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[3] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[4] 陈雷行, 苏金瑞, 何豪, 张宗镇, 蔡彬. 质子导体固体氧化物燃料电池的PrBa0.5Sr0.5Cu2O6-δ复合阴极材料[J]. 材料导报, 2019, 33(10): 1615-1618.
[5] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[6] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[7] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[8] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[9] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[10] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[11] 肖国庆, 勾黎敏, 丁冬海. 超级电容器用PVDC基碳电极的研究现状/肖国庆等超级电容器用PVDC基碳电极的研究现状[J]. 材料导报, 2018, 32(19): 3309-3317.
[12] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[13] 董文举, 孔令斌, 康龙, 冉奋. 超级电容器电极材料及器件的柔性化与微型化[J]. 材料导报, 2018, 32(17): 2912-2919.
[14] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[15] 谭永涛, 孔令斌, 康龙, 冉奋. Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 《材料导报》期刊社, 2018, 32(1): 47-50.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed