Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 1955-1958    https://doi.org/10.11896/cldb.18040289
  无机非金属及其复合材料 |
金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能
刘明1, 徐洪峰1, 周亚男1,2, 郝宇1
1 大连交通大学环境与化学工程学院,大连 116028
2 北京化工大学理学院,北京 100029
Preparation, Structure and Capacitance Property of Zn4O(BDC)3 Crystals ofMetal-Organic Frameworks
LIU Ming1, XU Hongfeng1, ZHOU Yanan1,2, HAO Yu1
1 College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028
2 Faculty of Science, Beijing University of Chemical Technology, Beijing 100029
下载:  全 文 ( PDF ) ( 1459KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用循环伏安和交流阻抗测试技术,在6 mol·L-1 KOH溶液中研究了溶剂热法合成的次级结构单元Zn4O(BDC)3的比电容性能及储能机理。结果表明,Zn4O(BDC)3晶体呈立方六面体形貌,颗粒均匀,尺寸为0.5~1 μm。Zn4O(BDC)3作为电极材料,在扫速为5 mV·s-1时,比电容可达217.39 F·g-1;当扫速增至200 mV·s-1时,比电容值维持在82.58 F·g-1左右,循环伏安曲线仍保持初始的氧化还原峰形状,表明其储能机理遵从赝电容机理,具有较高倍率的充放电性能。Nyquist图在高频区为直径很小的容抗弧,说明该电极材料内阻小,导电性良好;中低频区域为一段较大的不完整容抗弧,说明活性物种锌离子在充放电过程中传荷电阻大,该电极材料具有良好的电容特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘明
徐洪峰
周亚男
郝宇
关键词:  金属有机框架化合物  Zn4O(BDC)3  比电容  赝电容  超级电容器    
Abstract: Specific capacitance and energy storage mechanism of Zinc-based metal-organic frameworks in 6 mol·L-1 KOH aqueous solutions, consisting of the secondary building units Zn4O(BDC)3 synthesized in a solvothermal process, were studied by cyclic voltammetry and electrochemical impedance spectroscopy analysis. The results demonstrated that the prepared Zn4O(BDC)3 grains with cubic hexahedron structure were 0.5—1 μm in size. The results for the capacitive performance from cyclic voltammetry revealed that Zn4O(BDC)3 samples had gravimetric capacitance up to 217.39 F·g-1 at a scan rate of 5 mV·s-1. The electrode materials retained about 82.58 F·g-1 capacitance, and CV curves kept their initial redox shape unchanged even at high scan rate of 200 mV·s-1, indicating pseudocapacitor energy storage mechanism and excellent rate capability for Zn4O(BDC)3 electrode. From Nyquist plot of Zn4O(BDC)3 materials, the smaller semicircle in the high-frequency region revealed the lower internal resistance of electrode materials, and the incomplete larger semicircle in the middle- and low-frequency region represented the higher charge-transfer resistance values during the charge-discharge process of active Zn2+ species, both of which implied that Zn4O(BDC)3 materials produced a better capacitance property.
Key words:  metal-organic frameworks    Zn4O(BDC)3    specific capacitance    pseudocapacitor    supercapacitor
                    发布日期:  2019-05-31
ZTFLH:  O646  
基金资助: 国家科技部项目基金(2016YFB0101207); 辽宁省自然科学基金(20180550391)
通讯作者:  liuming@djtu.edu.cn   
作者简介:  刘明,大连交通大学副教授,博士研究生。1995年毕业于四川大学化学系,2003年研究生毕业于大连交通大学材料科学与工程专业,毕业后留校任教。在国内外学术期刊上发表论文30余篇,申请国家发明专利5项,其中授权3项。主要研究方向包括:金属材料表面改性,燃料电池核心材料制备,金属有机框架化合物(MOFs)用作高容量超级电容器电极材料的设计、制备和性能控制等方面。负责或参加科研项目20余项,包括国家自然科学基金、国家“863计划”、国家“973计划”、国家科技部基金、辽宁省教育厅基金、辽宁省科技厅基金、辽宁省自然科学基金等。
引用本文:    
刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
LIU Ming, XU Hongfeng, ZHOU Yanan, HAO Yu. Preparation, Structure and Capacitance Property of Zn4O(BDC)3 Crystals ofMetal-Organic Frameworks. Materials Reports, 2019, 33(12): 1955-1958.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040289  或          http://www.mater-rep.com/CN/Y2019/V33/I12/1955
1 Li Y S, Liang F Y, Bux H, et al. Journal of Membrane Science, 2010, 354, 48.
2 Wang G D, Li J H, Pan J, et al. Dalton Transactions, 2017, 46(3), 808.
3 Li J H, Han S D, Pan J, et al. CrystEngComm, 2017,19, 1160.
4 Ma Y J, Han S D, Mu Y, et al. Dalton Transactions, 2018,47, 1650.
5 Zhang D, Xue Z Z, Pan J, et al. Crystal Growth & Design, 2018, 18 (3), 1882.
6 Qiu L G, Li Z Q, Wu Y, et al. Chemical Communications, 2008, 31, 3642.
7 Zhang Y, Niu Y B, Liu T, et al. Materials Letters, 2015, 161, 712.
8 Ke F S, Wu Y S, Deng H X. Journal of Solid State Chemistry, 2015, 223, 109.
9 Kim A Y, Kim M K, Cho K, et al. ACS Applied Materials & Interfaces, 2016, 8, 19514.
10Inayat A K, Amin B, Muhammad A N, et al. International Jounal of Hydrogen Energy, 2014, 39, 19609.
11Li H, Yue F, Yang C, et al. Ceramics International, 2016, 42, 3121.
12Díaz R, Orcajo M G, Botas J A, et al. Materials Letters, 2012, 68, 126.
13Yaghi O M, Li G, Li H. Nature, 1995, 378, 703.
14Rosi N L, Eckert J, Eddaoudi M, et al. Science, 2003, 300, 1127.
15Choi K M, Jeong H M, Park J H, et al. ACS Nano, 2014, 8, 7451.
16Zhao Z X, Li Z, Li Y S. CIESC Journal, 2011, 62(2), 507 (in Chinese).
赵祯霞, 李忠, 李跃生. 化工学报, 2011, 62(2), 507.
17Yoo Y, Jeong H K. Chemical Communications, 2008, 21, 2441.
18Son W J, Kim J, Kim J, et al. Chemical Communications, 2008, 47, 6336.
19Yoo Y, Lai Z, Jeong H K. Micropor Mesoporous and Materials, 2009, 123, 100.
20Biemmi E, Christian S, Stock N, et al. Microporous and Mesoporous Materials, 2009, 117(1/2), 111.
21Zhang L, Hu Y H. Applied Surface Science, 2011, 257(8), 3392.
22Wu Z, Zhang X B. Acta Physico-Chimica Sinica, 2017, 33(2), 305 (in Chinese).
吴中, 张新波. 物理化学学报, 2017, 33(2), 305.
23Dai X J, Wang K, Zhou X M, et al. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 41(9), 1046 (in Chinese).
戴晓军, 王凯, 周小沫, 等. 中国科学:物理学 力学 天文学, 2011, 41(9), 1046.
24Ning G, Li T, Xu C, et al. Carbon, 2013, 5, 241.25Jia Z, Dai C S, Chen L. Electrochemistry measurement methods, Chemical Industry Press, China, 2006 (in Chinese).
贾铮, 戴长松, 陈玲. 电化学测量方法, 化学工业出版社, 2006.
26Wang Y F, Zuo S L. Acta Physico-Chimica Sinica, 2016, 33(2), 481 (in Chinese).
王永芳, 左松林. 物理化学学报, 2016, 32(2), 481.
[1] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[2] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[3] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[4] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[5] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[6] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[7] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[8] 肖国庆, 勾黎敏, 丁冬海. 超级电容器用PVDC基碳电极的研究现状/肖国庆等超级电容器用PVDC基碳电极的研究现状[J]. 材料导报, 2018, 32(19): 3309-3317.
[9] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[10] 董文举, 孔令斌, 康龙, 冉奋. 超级电容器电极材料及器件的柔性化与微型化[J]. 材料导报, 2018, 32(17): 2912-2919.
[11] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[12] 李祥,郑峰,罗援,罗泳梅. 超级电容器活性炭/MnO2复合电极材料的制备及性能[J]. 《材料导报》期刊社, 2018, 32(12): 1949-1954.
[13] 谭永涛, 孔令斌, 康龙, 冉奋. Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 《材料导报》期刊社, 2018, 32(1): 47-50.
[14] 唐捷, 华青松, 元金石, 张健敏, 赵玉玲. 超级电容器中的二维材料[J]. CLDB, 2017, 31(9): 26-35.
[15] 傅深娜, 马利, 甘孟瑜, 汪仕勇. 三维石墨烯及其复合材料的制备及在超级电容器中的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 9-15.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed