Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 1949-1954    https://doi.org/10.11896/j.issn.1005-023X.2018.12.002
  材料研究 |
超级电容器活性炭/MnO2复合电极材料的制备及性能
李祥1,郑峰2,罗援1,罗泳梅1
1 贵州理工学院材料与冶金工程学院,贵阳 550003;
2 中南大学材料科学与工程学院,长沙 410083
Preparation of Activated Carbon/MnO2 Composite Electrode Materials and Its Electrochemical Performance
LI Xiang1, ZHENG Feng2, LUO Yuan1, LUO Yongmei1
1 School of Materials and Metallurgical Engineering, Guizhou Institute of Technology, Guiyang 550003;
2 School of Materials Science and Engineering, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 4037KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 KMnO4和MnCl2在140 ℃反应釜中反应6 h并掺杂不同含量的活性炭,经球磨后制备成超级电容器活性炭/MnO2复合电极材料。通过BET测试得出,当活性炭含量为29%(质量分数,下同)时,复合电极材料的比表面积为451 m2/g。XRD结果表明,复合物的物相结构主要为非晶。SEM结果表明,复合电极的形貌为细小环绕微纳米绒球。XPS谱线表明不同活性炭含量的复合物中均含有Mn4+。当扫描速率为50 mV/s时,复合电极的比电容值达365 F/g,充放电效率为93%,等效串联电阻值仅为0.87 Ω。经3 000次循环后,复合电极中均出现不同程度的晶体相, 电极形貌变成颗粒状和块状,但复合粒子的均匀性增强,比电容值仅下降约6%。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李祥
郑峰
罗援
罗泳梅
关键词:  活性炭  MnO2  水热沉淀法  比电容  循环性能    
Abstract: KMnO4 reacted with MnCl2 while doped different activated carbon in reaction kettle at 140 ℃ for 6 h, then compo-site electrode materials for supercapacitor were prepared after ball mill. Specific surface area of 451 m2/g was obtained through BET mehtod for content of 29wt% activated carbon. XRD result revealed that MnO2/activated carbon composite were hydrated and amorphous. Morphology of composite was tiny and surrounded micro-nanometer pompon globe by SEM. XPS spectrum showed composite existence of Mn4+ in oxide form. Specific capacitance of the electrode reached 365 F/g when scan rate was 50 mV/s, and charge-discharge efficiency was 93% as well as equivalent series resistance value of 0.87 Ω. Composite electrode appeared crystal phase with different degree after 3 000 cycles, meanwhile, morphology of the electrode turned into particles and block, and capacitance value of the electrode decayed to only approximate 6%.
Key words:  activated carbon    MnO2    hydrothermal precipitation method    specific capacitance    cycle property
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  TM53  
基金资助: 贵州省科学技术基金(黔科合J字[2014] 2077);贵州省科学技术联合基金(黔科合LH字[2015]7092)
作者简介:  李祥:男,1974年生,博士,副教授,主要从事超级电容器电极材料研究 E-mail:gitmmlx@163.com
引用本文:    
李祥,郑峰,罗援,罗泳梅. 超级电容器活性炭/MnO2复合电极材料的制备及性能[J]. 《材料导报》期刊社, 2018, 32(12): 1949-1954.
LI Xiang, ZHENG Feng, LUO Yuan, LUO Yongmei. Preparation of Activated Carbon/MnO2 Composite Electrode Materials and Its Electrochemical Performance. Materials Reports, 2018, 32(12): 1949-1954.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.002  或          http://www.mater-rep.com/CN/Y2018/V32/I12/1949
1 Conte M. Supercapacitors technical requirements for new applications[J]. Fuel Cell,2010,5:806.
2 Izadi N, Yasuda A S, Futaba K Y, et al. Extracting the full potential of single-walled carbon nanotubes as durable super-capacitors electrodes operable at 4 V with high power and energy density[J]. Advanced Materials,2010,22:E235.
3 Conway B E.陈艾,吴梦强,张绪礼,等译.电化学电容器的科学原理及技术应用[M].北京:化学工业出版社,2005.
4 Ruiza V, Blancoa C, Santamaria R, et al. An activated carbon mono-lith as an electrode material for supercapacitors[J]. Carbon,2009,47:195.
5 Kuo S L, Wu N L. Composite supercapacitor containing tin oxide and electro-plated ruthenium oxide[J]. Electrochemical and Solid-State Letters,2003,6:A85.
6 Li X, Gan W P, Zhang W C, et al. Polyaniline/RuO2 composite electrode prepared by thermal decomposition and electro-chemistry polymerization procedures[J]. Acta Materiae Compositae Sinica,2012,29(5):1(in Chinese).
李祥,甘卫平,张文超,等.涂敷热分解及电化学聚合法制备氧化钌/聚苯胺复合电极[J].复合材料学报,2012,29(5):1.
7 Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources,2011,157:1.
8 Li X, Gan W P, Ma H R, et al. Preparation and properties of 60% RuO2-AC composite electrode materials by the colloidal[J]. Acta Materiae Compositae Sinica,2011,28(3):90(in Chinese).
李祥,甘卫平,马贺然,等.胶体法制备60% RuO2/AC复合电极材料及其性能[J].复合材料学报,2011,28(3):90.
9 Yan Y, Xu H, Guo W, et al. Facile synthesis of amorphous aluminum vanadate hierarchical microspheres for supercapacitors[J]. Inorganic Chemistry Frontiers,2016,3:791.
10 Yan Y, Xu H, Guo W, et al. Vanadium based materials as electrode materials for high performance supercapacitors[J]. Journal of Power Sources,2016,329:148.
11 Yan Y, Xu H, Zheng S S, et al. Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors[J]. Journal of Materials Chemistry A,2016,4:19078.
12 Sutrave D S, Joshi P S, Gothe S D, et al. Structural and morpholo-gical properties of ruthenium oxide thin films deposited by sol-gel spin coating[J]. International Journal of ChemTech Research,2014,6(3):1991.
13 Liu H, Gan W P, Huang B, et al. Preparation of doped tin ruthenium oxide film electrode for supercapacotor[J]. Rare Metal Material and Engineering,2011,40(1):115(in Chinese).
刘泓,甘卫平,黄波,等.掺锡氧化钌超级电容器薄膜电极的研制[J].稀有金属材料与工程,2011,40(1):115.
14 Ma W J, Chen S H, Yang S Y, et al. Hierarchical MnO2 nanowires/graphene hybrid fibers with excellent electro-chemical perfor-mance for flexible solid-state supercapacitors[J]. Jouranl of Power Sources,2016,306:481.
15 Rakhi R B, Chen W, Hedhili M N, et al. Enhanced rate perfor-mance of meso-porous Co3O4 nanosheet super-capacitor electrode by hydrous RuO2 nanoparticle decoration[J]. ACS Applied Materials Interfaces,2014,6:4196.
16 Yan Y, Wang T Y, Li X R, et al. Noble metal-based materials in high-performance supercapacitors[J]. Inorganic Chemistry Frontiers,2017,4:33.
17 Xiong Y C, Zhou M, Chen H, et al. Synthesis of honeycomb MnO2 nano spheres/carbon nanoparticles/graphene composites as electrode materials for supercapacitors[J]. Applied Surface Science,2015,357:1024.
18 Lee D G, Kim J H, Kim B H. Hierarchical porous MnO2/carbon nanofiber composite with hollow cores for high performance supercapacitor electrodes: Effect of poly (methacrylate) concentration[J]. Electrochimica Acta,2016,200:174.
19 Vinny R T, Chaitra K, Krishna V, et al. An excellent cycle performance of asymmetric supercapacitor based on bristles like α-MnO2[J]. Journal of Power Sources,2016,309:212.
20 Chen W Y, Tao X Q, Wei D H. High performance supercapacitor based activated-MnO2-polyanilinecomposite[J]. Journal of Materials Science-Materials in Electronics,2016,27:1357.
21 Fu C J, Li S, Song C L, et al. Preparation of polypyrrol/graphite oxide composite and its capacitive properties[J]. Acta Materiae Compositae Sinica,2016,33(3):572(in Chinese).
付长璟,李爽,宋春来,等.聚吡咯/氧化石墨烯复合材料的制备及其电容性能[J].复合材料学报,2016,33(3):572.
22 Gao G P, Lu A H, Li W C. Dual functions of activated carbon in positive electrode for MnO2 based supercapacitors[J]. Journal of Power Sources,2011,196:4095.
23 Xiong Y C, Zhou M, Chen H, et al. Synthesis of honeycomb MnO2 nanospheres/carbon nanoparticles/grap here composite as super capaciotrs electrode materials[J]. Applied Surface Science,2015,357:1024.
18 Zhang L, Chen G, He Z B, et al. Investigation of working pressure on the surface roughness controlling technology of glow discharge polymer films based on the diagnosed plasma[J]. Plasma Science and Technology,2017,19:075505.
19 Lee H C, Lee M H, Chung C W. Experimental observation of the transition from nonlocal to local kinetics in inductively coupled plasmas[J]. Applied Physics Letters,2010,96(4):940.
20 李定,陈银,马锦,等.等离子体物理学[M].北京:科学出版社,1994.
21 Chen G. Effect of glow discharge plasma on the growth mechanism of a-C∶H films[D]. Mianyang: China Academy of Engineering Physics,2016(in Chinese).
陈果.辉光放电等离子体状态对α-C∶H薄膜生长规律的影响研究[D].绵阳:中国工程物理研究院,2016.
22 Lee H C, Chung C W. Effect of antenna size on electron kinetics in inductively coupled plasmas[J]. Physics of Plasmas,2013,20(10):728.
23 Jiao C Q, Ganguly B N, Garscadden A. Mass spectrometry study of decomposition of exo-tetrahydrodicyclopentadiene by low-power, low-pressure rf plasma[J]. Journal of Applied Physics,2009,105(3):1886.
24 Bauer M, Schwarz-Selinger T, Jacob W, et al. Growth precursors for a-C∶H film deposition in pulsed inductively coupled methane plasmas[J]. Journal of Applied Physics,2005,98(7):3097.
[1] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[2] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[3] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[4] 林星, 林冠烽, 黄彪1. 物理化学活化法制备红麻杆基活性炭及其表征[J]. 材料导报, 2019, 33(1): 198-202.
[5] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[6] 阳锋, 杨淑颐, 魏子斐, 王莉淋. 过硫酸氢盐催化材料(Co3O4/ACF)的制备及应用[J]. 材料导报, 2018, 32(20): 3654-3659.
[7] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[8] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[9] 赵晓明, 刘宝成. 透气式防毒服的发展现状及最新研究进展[J]. 材料导报, 2018, 32(17): 3083-3089.
[10] 李严, 王欣, 黄金田. 沙柳活性炭纤维改性及其对铅离子的吸附性能[J]. 《材料导报》期刊社, 2018, 32(14): 2360-2365.
[11] 吴健, 关庆丰, 蔡杰, 吕鹏, 张从林, 李晨. 脉冲电子束作用下热障涂层微观结构及热循环性能[J]. 《材料导报》期刊社, 2018, 32(13): 2202-2207.
[12] 李诗杰, 韩奎华, 韩旭东, 路春美. 马尾藻基高比表面积活性炭的制备及表征[J]. 《材料导报》期刊社, 2017, 31(6): 38-44.
[13] 黄凯兵, 杨秀文, 王智健, 姚异渊. 基于四羟甲基甘脲前驱体的新型含氮富微孔活性炭制备及其性能研究[J]. 《材料导报》期刊社, 2017, 31(4): 30-35.
[14] 张鸿宇,李治应,曾蓉,. 高效温和制备纳米片状β-Co(OH)2用于超级电容器电极[J]. 材料导报编辑部, 2017, 31(22): 15-20.
[15] 宋晓岚, 刘汉俊, 王海波, 段海龙, 张颖, 刘时超, 周永鑫, 周志海. 预活化时间对稻壳基活性炭结构和电化学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 25-29.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed