Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 3083-3089    https://doi.org/10.11896/j.issn.1005-023X.2018.17.022
  高分子与聚合物基复合材料 |
透气式防毒服的发展现状及最新研究进展
赵晓明, 刘宝成
天津工业大学纺织学院,天津 300387
Permeable Protective Suit: Status Quo and Latest Research Progress
ZHAO Xiaoming, LIU Baocheng
Cellege of Textiles,Tianjin Polytechnic University, Tianjin 300387
下载:  全 文 ( PDF ) ( 2107KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来恐怖袭击和危险化学品泄漏等突发事件时有发生,个人防护装备的市场需求呈持续增长态势。透气式防毒服是一类可透过空气和湿气,但能阻止外界有毒气体、雾滴状毒剂、细菌和放射性尘埃对人体造成伤害的军民使用的皮肤防护装备。经过近一个世纪的发展,各国已有相对成熟的透气式防毒服问世,其大多采用活性炭吸附材料制成。这种活性炭吸附型材料的防护性能虽好,但也存在无选择吸附、对大的毒剂液滴防护性能差、易产生二次污染等问题。
   随着新材料、新技术的不断开发和完善,透气式防毒服材料将不再局限于现有的活性炭吸附技术,而是使用新材料、新技术,并且向高性能、多功能、轻量化和舒适化的方向发展。选择性透过材料允许水蒸气等小分子透过,而较大的毒剂分子不能透过,防护性能好,能够防御分子较大的液态、气态、气溶胶及固体等状态的有害物质,具有较好的透湿性能和穿着舒适性,是透气式防毒服较理想的材料。微胶囊自修复技术有助于对致命的化学毒剂、细菌和病毒建立良好的物理屏障,从而为相关人员提供及时、不间断的防护。静电纺纳米纤维具有非常小的孔径和极大的比表面积,静电纺纳米纤维膜具有对气溶胶过滤效率高、透气性好、面密度低和压力损失小等优点,将其应用到防护织物上,更有利于提高个人防护装备的性能。碳纳米管具有独特的本征空腔结构、单分散的纳米孔道和输送性能,能够有效促进气体或液体分子的传递,为未来真正做出超轻、超透气且薄如蝉翼的防护服带来了希望。金属-有机框架材料具有规整的孔径分布、开阔的骨架结构、巨大的比表面积和超高的吸附容量。将其应用到生化防护领域,将明显改进防护服的防护效果,降低危险生化物质给人体带来的损伤。自净化材料可快速抑制或杀死广谱生物,快速净化有毒试剂,该材料制备的防护服长期使用后仍能保持舒适和透气性。
   本文概述了各国透气式防毒服的发展现状,总结了我国透气式防毒服的发展历程,介绍了新材料、新技术在透气式防毒服领域的最新研究进展,为我国个体防护装备的设计与研发提供了建设性的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵晓明
刘宝成
关键词:  生化防护  活性炭吸附材料  透气式防毒服  新材料    
Abstract: In recent years, terrorist attacks and dangerous chemical leaks have frequently occurred, bringing a constantly growing market demand for personal protective equipment. Permeable protective suit is a kind of skin protective equipment with air and moisture permeability which can prevent human body from the injuring of toxic gases, droplet like agents, bacteria and radioactive dust. The research and development of permeable protective suits over the world have underwent nearly a century, and relatively mature products have been obtained which mainly made from activated carbon adsorption materials. Although activated carbon adsorption material has favorable protective properties, there are also problems like non-selective adsorption, poor protection perfor-mance of large toxic liquid droplets and secondary pollution.
   With the emerging of new materials and new technologies, permeable protective suit materials will no longer only rely on the existing activated carbon adsorption technology. New materials and new technologies will accelerate the advances of permeable protective suits in pursuit of high performance, multi-function, light weight and comfort. Selectively permeable material allows small molecules like water vapor to pass through, while blocks larger toxicant molecules, which possesses good protective properties and can resist harmful substances such as liquid, gas, aerosol and solid with large molecular weight. Besides, selectively permeable material exhibits excellent moisture permeability and wearing comfort which make it to be the ideal choice for permeable protective suit. Microcapsule self-healing techniques help establish a good physical barrier to deadly chemical agents, bacteria and viruses, providing people with timely, uninterrupted protection. The electrospun nanofiber membranes feature high aerosol filtration efficiency, good air permeability, low surface density and low pressure loss, thanks to the tiny pore size and huge surface area of electrospun nanofibers. It will greatly improve the performance of personal protective equipment when electrospun nanofiber membranes are applied to protective fabric. Carbon nanotubes can effectively accelerate the transfer of gas or liquid molecules because of their unique intrinsic cavity structure, monodispersed nano-channels and transport properties, which bring hope for the fabrication of ultra-light and super-breathable protective clothing as thin as a cicada’s wings in the future. Metal-organic frame materials present regular pore size distribution, open skeleton structure, huge specific surface area and super high adsorption capacity. The application of metal organic frameworks in the field of biochemical protection will significantly improve the protective effect of protective clothing and reduce the damage caused by dangerous biochemical substances. Self-purification materials can quickly inhibit or kill a broad spectrum of orga-nisms, rapid purification of toxic reagents, protective clothing made from self purification materials can remain comfortable and breathable after long term service.
   This article outlines the current situation of the permeable protective suit in different countries, summarizes the development history of the gas protective clothing, introduces the latest research progress of new materials and technologies in the field of the permeable protective suit,which will provide reference for the design and development of personal protective equipment.
Key words:  biochemical protection    activated carbon adsorption material    permeable protective suit    new material
                    发布日期:  2018-09-19
ZTFLH:  TJ9  
基金资助: 国家自然科学基金(51206122);2017年度天津工业大学天津市高等学校基本科研业务资助项目(TJPU2K20170105)
作者简介:  赵晓明:男,1963年生,博士,教授,主要从事防护材料的制备 E-mail:texzhao@163.com
引用本文:    
赵晓明, 刘宝成. 透气式防毒服的发展现状及最新研究进展[J]. 材料导报, 2018, 32(17): 3083-3089.
ZHAO Xiaoming, LIU Baocheng. Permeable Protective Suit: Status Quo and Latest Research Progress. Materials Reports, 2018, 32(17): 3083-3089.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.022  或          http://www.mater-rep.com/CN/Y2018/V32/I17/3083
1 Tian T, Duan H L, Wu J H, et al. Current situation of worldwide biochemical protective clothing and chinese countermeasures[J].Chinese Medical Equipment Jonrnal,2008,29(7):29(in Chinese).
田涛,段惠莉,吴金辉,等.国内外生化防护服的研究现状与发展对策[J].医疗卫生装备,2008,29(7):29.
2 Lv H, Zhu H Y, Cheng H. A review on the development of chemical biological potective Suit[J].China Personal Protective Equipment,2014(3):19(in Chinese).
吕晖,朱宏勇,程昊.生化防护服的发展概述[J].中国个体防护装备,2014(3):19.
3 Fang J J, Xu L J, He Y L. The development and application of personal protective equipment for chemical warfare agent[J].China Personal Protective Equipment,2009(4):21(in Chinese).
方晶晶,许林军,何艳兰.化学毒剂的个人防护装备发展及使用概况[J].中国个体防护装备,2009(4):21.
4 Boopathi M, Singh B, Vijayaraghavan R. A review on NBC body protective clothing[J].The Open Textile Journal,2008,1(1):1.
5 Huo R T, Gu Z Y. Chemical protective clothing materials and its application[J].Technical Textiles,2006(8):1(in Chinese).
霍瑞亭,顾振亚.化学防护服材料及其应用[J].产业用纺织品,2006(8):1.
6 Liu E W, Cui Z P, Li X M, et al. The trend of permeable chemical protective suit[J].Technical Textiles,2014(6):1(in Chinese).
刘恩文,崔志鹏,李秀明,等.透气式化学防护服的发展趋势[J].产业用纺织品,2014(6):1.
7 Gao S T. Development status and trend of nbc personal protective epuipment of US armed forces[J].China Personal Protective Equipment,2011(4):13(in Chinese).
高树田.美军核生化个体防护装备发展现状与趋势[J].中国个体防护装备,2011(4):13.
8 Endrusick T, Gonzalez J, Gonzalez R. Improved comfort of US military chemical and biological protective clothing[J].Elsevier Ergonomics Book,2005,3(5):369.
9 Liang T, Li L, Li H G, et al. Research on permeable protective suit special for disposing of Japanese abandoned chemical weapons in China[J].China Personal Protective Equipment,2008(2):8(in Chinese).
梁涛,李雷,李和国,等.处理日本遗弃在华化学武器专用透气防毒服的研究[J].中国个体防护装备,2008(2):8.
10 Salter B, Owens J, Hayn R, et al. N-chloramide modified Nomex® as a regenerable self-decontaminating material for protection against chemical warfare agents[J].Journal of Materials Science,2009,44(8):2069.
11 Schreuder-Gibson H L, Truong Q, Walker J E, et al. Chemical and biological protection and detection in fabrics for protective clothing[J].MRS Bulletin,2003,28(8):574.
12 李君臣,毕晓静,王红梅,等.金属-有机框架材料降解化学战剂及其模拟剂反应[C]//中国化学会学术年会.大连,2016.
13 Nurfaizey A H, Tucker N, Stanger J, et al. 12-Functional nanofibers in clothing for protection against chemical and biological hazards[M].Cambridge Functional Nanofibers and their Applications,2012:236
14 Gaddes D, Jung H, Pena-Francesch A, et al. Self-healing textile: Enzyme encapsulated layer-by-layer structural proteins[J].ACS Applied Materials & Interfaces,2016,8(31):20371.
15 Lu C C. Latest development of bio-chemical protective textiles[J].China Textile Leader,2013(1):81(in Chinese).
芦长椿.生物与化学防护用纺织品的最新进展[J].纺织导报,2013,(1):81.
16 Han L L, Qi X L, Yu M B, et al. Current situation and development of biological protective suit[J].Guangzhou Chemical Industry,2013,41(24):24(in Chinese).
韩丽丽,齐秀丽,于孟斌,等.新型生物防护材料研究现状与发展[J].广州化工,2013,41(24):24.
17 Yang Y, Luo Y P, Zhang H P. Preparation and characterization of microcapsules for self-healing Material[J].Materials Review B:Research Papers,2011,25(1):30(in Chinese).
鄢瑛,罗永平,张会平.自修复微胶囊的制备与表征[J].材料导报:研究篇,2011,25(1):30.
18 Gu H C, Yang T, Shen Y J. Research progress in self-healing of polymer matrix composites[J].Materials Review,2016,30(S2):374(in Chinese).
顾海超,杨涛,申艳娇.聚合物基复合材料自修复的研究进展[J].材料导报,2016,30(S2):374.
19 Kessler M R, White S R. Self-activated healing of delamination da-mage in woven composites[J].Composites Part A: Applied Science & Manufacturing,2001,32(5):683.
20 Yuan L, Liang G Z, Xie J Q, et al. Synthesis and characterization of microencapsulated dicyclopentadiene with melamine-formaldehyde resins[J].Colloid & Polymer Science,2007,285(7):781.
21 Wilson G, Moore J, White S, et al. Autonomic healing of epoxy vinyl esters via ring opening metathesis polymerization[J].Advanced Functional Materials,2010,18(1):44.
22 White S R, Sottos N R, Geubelle P H, et al. Autonomic healing of polymer composites[J].Nature,2001,409(6822):794.
23 Schreuder-Gibson H L, Gibson P, Senecal K, et al. Protective textile materials based on electrospun nanofibers[J].Chemical Fibers International,2010,34(3):44.
24 Lee S, Obendorf S K. Developing protective textile materials as barriers to liquid penetration using melt-electrospinning[J].Journal of Applied Polymer Science,2006,102(4):3430.
25 Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2001,187:469.
26 Graham K, Schreuder-Gibson H, Gogins M. Incorporation of electrospun nanofibers into functional structures[C]//International Nonwovens Technical Conference. Baltimore, Maryland,2003:21.
27 You X D, Liu H B, Wang J H, et al. Development of nanocrystalline metaloxides against chemical agents[J].Chinese Medical Equipment Journal,2007(3):28(in Chinese).
游秀东,刘红斌,王济虎,等.纳米金属氧化物在化学战剂防护中的研究进展[J].医疗卫生装备,2007(3):28.
28 Ramaseshan R, Ramakrishna S. Zinc titanate nanofibers for the detoxification of chemical warfare simulants[J].Journal of the American Ceramic Society,2007,90(6):1836.
29 Vitchuli N, Shi Q, Nowak J, et al. Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning-electrospraying hybrid process for use in protective applications[J].Science & Technology of Advanced Materials,2011,12(5):055004.
30 Gong X N, Zhu L P, Xu Y Y, et al. Applications of carbon nanotubes (CNTs) in separation membrane materials[J].Membrane Science and Technology,2011,31(5):89(in Chinese).
宫晓娜,朱利平,徐又一,等.碳纳米管在分离膜材料中的应用[J].膜科学与技术,2011,31(5):89.
31 And S J, Aluru N R. Why are carbon nanotubes fast transporters of water?[J].Nano Letters,2008,8(2):452.
32 Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube[J].Nature,2001,414(6860):188.
33 Majumder M, Chopra N, Andrews R, et al. Nanoscale hydrodyna-mics: Enhanced flow in carbon nanotubes[J].Nature,2005,438(7064):44.
34 Ansari R, Kazemi E. Detailed investigation on single water molecule entering carbon nanotubes[J].Applied Mathematics and Mechanics,2012,33(10):1287.
35 Fornasiero F. Water vapor transport in carbon nanotube membranes and application in breathable and protective fabrics Francesco Fornasiero[J].Current Opinion in Chemical Engineering,2017,16:1.
36 Kalra A, Garde S, Hummer G. Osmotic water transport through carbon nanotube membranes[J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(18):10175.
37 Brewer S A. Recent advances in breathable barrier membranes for individual protective equipment[J].Recent Patents on Materials Science,2011,4(1):1.
38 Gugliuzza A, Drioli E. A review on membrane engineering for innovation in wearable fabrics and protective textiles[J].Journal of Membrane Science,2013,446(11):350.
39 Bui N, Meshot E R, Kim S, et al. Ultrabreathable and protective membranes with Sub-5 nm carbon nanotube pores[J].Advanced Materials,2016,28(28):5871.
40 Seoane B, Castellanos S, Dikhtiarenko A, et al. Multi-scale crystal engineering of metal organic frameworks[J].Coordination Chemistry Reviews,2016,307(8):147.
41 Howarth A, Liu Y, Li P, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks[J].Nature Reviews Mate-rials,2016,1:15018.
42 Li Y,Sun X Y, Hu X Y, et al. Preparation and adsorptive application of hierarchical-pore metal-organic frameworks[J].Modern Chemical Industry,2017(4):33(in Chinese).
李莹,孙晓英,胡绪尧,等.多级孔MOFs材料的制备及吸附应用研究[J].现代化工,2017(4):33.
43 Khan N A, Hasan Z, Jhung S H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review[J].Journal of Hazardous Materials,2013,244-245:444.
44 Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit?[J].Journal of the American Chemical Society,2012,134(36):15016.
45 Fu K, Huang S S, Zhao Z X. Progress of the synthesis of metal organic frameworks materials and its application in organic gas adsorption[J].New Chemical Material,2013(8):4(in Chinese).
符瞰,黄思思,赵祯霞.MOFs材料合成及其对有机气体吸附研究进展[J].化工新型材料,2013(8):4.
46 Li Y, Zhang H X, Yan K L, et al. Progress of metal-organic frameworks (MOFs) as absorptive materials in gas masks[J].Funtional Materials Industry,2017,48(3):3057(in Chinese).
李莹,张红星,闫柯乐,等.MOFs作为防毒面具中吸附材料的应用研究[J].功能材料.2017,48(3):3057.
47 Zhang M C. Composites based metai-organic frameworks (HUST-1) prepation and properties of degrading HD[D].Beijing: Beijing University of Chemical Technology,2016(in Chinese).
张明才.基于金属-有机骨架化合物(HKUST-1)复合材料的制备及其降解芥子气的性能研究[D].北京:北京化工大学,2016.
48 Roy A, Srivastava A K, Singh B, et al. Degradation of sulfur mustard and 2-chloroethyl ethyl sulfide on Cu-BTC metal organic framework[J].Microporous & Mesoporous Materials,2012,162(162):207.49 Wang S, Bromberg L, Schreudergibson H, et al. Organophophorous ester degradation by chromium(Ⅲ) terephthalate metal-organic framework (MIL-101) chelated to N,N-dimethylaminopyridine and related ainopyridines[J].ACS Applied Materials & Interfaces,2013,5(4):1269.
50 Islamoglu T, Atilgan A, Moon S Y, et al. Cerium (Ⅳ) vs Zirco-nium(Ⅳ) based metal-organic frameworks for detoxification of a nerve agent[J].Chemistry of Materials,2017,29(7):2672.
51 Peterson G W, Rossin J A, Decoste J B, et al. Zirconium hydroxide-metal-organic framework composites for toxic chemical removal[J].Industrial & Engineering Chemistry Research,2013,52(15):5462.
52 Peterson G, Moon S, Wagner G, et al. Tailoring the pore size and functionality of UiO-type metal-organic frameworks for optimal nerve agent destruction[J].Inorganic Chemistry,2015,54(20):9684.
53 Moon S, Wagner G W, Mondloch J E, et al. Effective, facile, and selective hydrolysis of the chemical warfare agent VX using Zr6-based metal-organic frameworks[J].Inorganic chemistry,2015,54(22):10829.
54 Mondloch J E, Katz M J, Iii W C I, et al. Destruction of chemical warfare agents using metal-organic frameworks[J].Nature Mate-rials,2015,14(5):512.
55 Sesha Vemuri R, Armatis P. An overview of detection and neutra-lization of chemical warfare agents using metal organic frameworks[J].Journal of Bioterrorism & Biodefense,2015,6:3.
56 Decoste J B, Peterson G W. Metal-organic frameworks for air purification of toxic chemicals[J].Chemical Reviews,2014,114(11):5695.
57 Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J].Chemical Society Reviews,2009,38(5):1477.
58 Lee D, Zhao J, Peterson G, et al. Catalytic “MOF-cloth” formed via directed supramolecular assembly of UiO-66-NH2 crystals on atomic layer deposition-coated textiles for rapid degradation of chemical warfare agent simulants[J].Chemistry of Materials,2017,29(11):4894.
59 Sun G, Worley S, Broughton R. 12-Self-decontaminating materials for chemical biological protective clothing[M].Cambridge:Military Textiles,2008:281.
60 Amitai G, Murata H, Andersen J D, et al. Decontamination of chemical and biological warfare agents with a single multi-functional material[J].Biomaterials,2010,31(15):4417.
61 Sun Y, Sun G. Novel refreshable N-halamine polymeric biocides: N-chlorination of aromatic polyamides[J].Industrial & Engineering Chemistry Research,2004,43(17):5015.
62 Ormond R, Barker R. 5-Chemical, biological, radiological and nuclear (CBRN) protective clothing[M].Protective Clothing,2014:112.
[1] 秦建伟, 罗丽珠, 帅茂兵. 金属铀的水蒸气腐蚀行为研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 17-24.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed