Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 17-24    https://doi.org/10.11896/j.issn.1005-023X.2017.013.003
  材料综述 |
金属铀的水蒸气腐蚀行为研究现状*
秦建伟1, 罗丽珠1, 帅茂兵2
1 表面物理化学重点实验室,绵阳621700;
2 中国工程物理研究院材料研究所,绵阳 621700
Research Status of Corrosion Behavior for Uranium in Vapor Environment
QIN Jianwei1, LUO Lizhu1, SHUAI Maobing2
1 Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621700;
2 Institute of Material Science, Chinese Academic of Engineering and Physics, Mianyang 621700
下载:  全 文 ( PDF ) ( 1716KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属铀是一种重要的核材料,在国防工业和能源系统中得到广泛应用,由于其具有高化学活性,当贮存环境中含有微量水蒸气时容易发生腐蚀而影响其使用性能。为深入认识金属铀在含水环境中的腐蚀老化过程,研究人员开展了大量科学研究。围绕腐蚀产物、腐蚀动力学以及腐蚀机理综述了国内外关于金属铀与水反应过程的主要研究成果,从氧化铀缺陷结构、金属铀微观结构对反应过程的影响以及O2的氧化抑制机理等方面对下一步研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦建伟
罗丽珠
帅茂兵
关键词:  铀水  腐蚀产物  腐蚀动力学  腐蚀机理    
Abstract: Uranium is one of the most important nuclear material, which have been widely used in defense industry and energy engineering. However, its properties could be decreased due to the reaction with minor vapor existed in the environment during stockpile, which stems from the high chemical reactivity of uranium. A lot of researches are developed in order to recognize the reaction process between uranium and water. The main points of these reactions are reviewed in this paper, including the corrosion pro-ducts, corrosion kinetics and corrosion mechanisms. The future research areas are proposed based on the defect structures in uranium oxide, microstructure of the uranium metal and the inhibition mechanism by oxygen.
Key words:  uranium water    corrosion product    corrosion kinetics    corrosion mechanism
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  O647  
  TJ91  
基金资助: *中国工程物理研究院预先研究重大项目(No.TA03)
通讯作者:  帅茂兵:通讯作者,男,1968年生,博士,研究员,博士研究生导师,主要从事核材料抗腐蚀特性及腐蚀机理研究   
作者简介:  秦建伟:男,1985年生,博士研究生,工程师,主要从事核材料腐蚀机理研究 E-mail:qjw328@163.com
引用本文:    
秦建伟, 罗丽珠, 帅茂兵. 金属铀的水蒸气腐蚀行为研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 17-24.
QIN Jianwei, LUO Lizhu, SHUAI Maobing. Research Status of Corrosion Behavior for Uranium in Vapor Environment. Materials Reports, 2017, 31(13): 17-24.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.003  或          http://www.mater-rep.com/CN/Y2017/V31/I13/17
1 Luo L Z, Lai X C, Wang X L. Progress on uranium surface science [J].Prog Chem,2011,23(7):1322(in Chinese).
罗丽珠,赖新春,汪小琳. 我国铀表面科学研究进展[J]. 化学进展,2011,23(7):1322.
2 Xiong B T,Meng D Q, Yang W C. Experimental study on accele-rated corrosion uranium-water vapor by thermogravimetry[J].Ato-mic Energy Sci Technol,2005,39(3):226(in Chinese).
熊必涛,蒙大桥,杨维才. 金属铀在水气气氛中加速腐蚀的实验研究[J]. 原子能科学技术,2005,39(3):226.
3 Wang X L, Fu Y B, Xie R S. Study on the surface oxidation of uranium in different gaseous atmospheres [J]. China Nucl Sci Technol Rep,1996(S1):475(in Chinese).
汪小琳, 傅依备, 谢仁寿. 金属铀在各种气体环境中的表面氧化反应[J]. 中国核科技报告,1996(S1):475.
4 Wu Y P, Zhu S F, Liu T W, et al. Reaction of uranium and its alloy with oxygen and water vapor[J]. J Nucl Radiochem,2014,36(6):321(in Chinese).
吴艳萍, 朱生发, 刘天伟, 等. 铀及其合金的水氧腐蚀机理分析[J]. 核化学与放射化学,2014,36(6):321.
5 Kofstad P. High-temperature oxidation of metals[M]. New York: John Wiley Sons,1966:340.
6 Leibowitz L, Schnizlein J G, Bingle J D, et al. The kinetics of oxidation of uranium between 125° and 250°C [J]. J Electrochem Soc,1961,108(12):1155.
7 Orman S. Oxidation of uranium and uranium alloys[M]. MA: Brook Hill Publishing Company,1976:815.
8 Baker L, Bingle J D. The kinetics of oxidation of uranium between 300 and 625 ℃[J]. J Nucl Mater,1966,20:11.
9 Baker M M, Less L N, Orman S. Uranium + water reaction Part 1. Kinetics, products and mechanism[J]. Trans Faraday Soc,1966,108(62):2513.
10 Espriu-Gascon A, Llorca J, Dominguez M, et al. UO2 surface oxidation by mixtures of water vapor and hydrogen as a function of temperature[J]. J Nucl Mater,2015, 467:240.
11 Pearce R J, Bennett M J, Price J B. Oxidation of irradiated uranium in moist air [J]. Nucl Energy,1988,27:305.
12 Magnani N J. The reaction of uranium and its alloys with water vapor at low temperatures: SAND-74-0145[R]. Sandia National Laboratory, 1974.
13 Peretrukhin V F, Maslennikov A G, Tsivadze A Y, et al. Corrosion of uranium and its low content Zr, Nb, and Ru alloys in aqueous solutions [J]. Protect Metals,2008,44(3):211.
14 Hayward P J, Evans D G, Taylor P, et al. Oxidation of uranium in steam [J]. J Nucl Mater,1994,217(1-2):82.
15 Hilton B A. Review of oxidation rates of DOE spent nuclear fuel: Part 1-metallic fuel: ANL-00/24[R]. US DOE: Argonne National Laboratory,2000.
16 Totemeier T C. A review of the corrosion and pyrophoricity behavior of uranium and plutonium, ANL/ED/95-2[R]. US DOE: Argonne National Laboratory,1995.
17 Lynds L, Young W A, Mohl J S. An X-ray and density study of nonstoichiometry in uranium oxides[M]. NY: American Chemical Society,1962:58.
18 Alekseyev V A, Anan’yeva L A, Rafal’skiy R P. Effects of composition on lattice parameter of UO2+x[J]. Int Geology Rev,1981,23(10):1229.
19 Wilkinson W D. Uranium metallurgy[M]. New York: Interscience Publishers,1962:757.
20 Waber J T. A review of the corrosion behaviour of uranium, LA-2035[R]. Los Alamos: Los Alamos National Laboratory,1958.
21 Stitt C A, Paraskevoulakos C, Harker N J. The effects of metal surface geometry on the formation of uranium hydride [J]. Corros Sci,2015,98:63.
22 Ritchie A G.A review of the rates of reaction of uranium with oxygen and water vapour at temperatures up to 300 ℃[J]. J Nucl Mater,1981,102:170.
23 Colmenares C A. Oxidation mechanisms and catalytic properties of the actinides[J]. Prog Solid State Chem,1984,15:257.
24 Trimble D J. Reaction rate constant for uranium in water and water vapor, HNF-2853[R].Washington DC,1998.
25 Ritchie A G. The kinetics and mechanism of the uranium-water vapor reaction — An evaluation of some published work [J]. J Nucl Mater,1984,120:143.
26 Pearce R J, Kay P. The reaction of uranium in the U-O2-H2O and U-H2O Systems, TPRD/B/0954/R87[R]. Berkeley: Berkeley Nuclear Laboratories, 1987.
27 Abrefah J, Sell R L. Oxidation of K-west basin spent nuclear fuel in moist helium atmosphere: PNNL-12167[R]. Richland: Pacific Northwest National Laboratory,1999.
28 Ritchie A G, Greenwood R C, Randles S J. The kinetics of the uranium-oxygen water vapour reaction between 40 and 100 ℃[J]. J Nucl Mater,1986,139:121.
29 Pearce R J. A review of the rates of reaction of unirradiated uranium in gaseous atmospheres, RD/B/6231/R89[R]. Berkeley: Berkeley Nuclear Laboratories,1989.
30 Baker M M, Less L N, Orman S. Uranium + water reaction Part 2.Effect of oxygen and other gases[J]. Trans Faraday Soc,1966,108(62):2525.
31 Tiferet E, Mintz M H, Jacob I, et al. Inhibition of hydrogen chemisorption on uranium surfaces by traces of water vapor [J]. Surf Sci,2007,601:4925.
32 Allen G C, Tucker P M, Lewis R A. X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen + water-vapour mixtures [J]. J Chem Soc,1984,80:991.
33 Balloch M, Hamza A V. Hydrogen and water vapor adsorption on and reaction with uranium [J]. J Nucl Mater, 1996,230:259.
34 Manner W L, Lloyd J A, Paffett M T. Reexamination of the fundamental interactions of water with uranium [J]. J Nucl Mater,1999,275:37.
35 Winer K, Colmenares C A, Smith R L. Interaction of water vapor with clean and oxygen-covered uranium surfaces [J]. Surf Sci,1987,183:67.
36 Hedhili M N, Yakshinskiy B V, Madey T E. Interaction of water vapor with UO2(001)[J]. Surf Sci,2000,445:512.
37 Rabalais J W. Direct recoil spectrometry [J]. Critical Rev Solid State Mater Sci,1988,14(4):319.
38 Tiferet E, Zalkind S, Mintz M H. Interactions of water vapor with polycrystalline uranium surfaces— The low temperature regime[J]. Surf Sci,2007,601:936.
39 Mintz M H, Shamir N. The use of direct recoil spectrometry (DRS) for the study of water vapor interactions on polycrystalline metallic surfaces—The H2O/U and H2O/Ti systems [J]. Appl Surf Sci,2005,252(3):633.
40 Tiferet E, Mintz M H, Shamir N, et al. Inhibition of hydrogen chemisorption on uranium surfaces by traces of water vapor[J]. Surf Sci,2007,601(21):4925.
41 Tiferet E, Mintz M H, Zalkind S. Heat treatment effects on the surface chemisorption behavior of strained uranium: The H2O/U reaction [J]. J Alloys Compd,2007,444-445: 177.
42 Cohen S, Mintz M H, Zalkind S, et al. Water chemisorption on a sputter deposited uranium dioxide film — Effect of defects [J]. Solid State Ionics,2014,263:39.
43 Liu Z X. The adsorption and dissociation of oxygen-contained gas molecule on uranium surface: A first-principles study [D]. Changsha:Hunan University, 2012.
刘智骁. 含氧气体分子在铀表面吸附与解离特性的第一性原理研究[D]. 长沙:湖南大学,2012.
44 Bo T, Lan J H, Wang C Z, et al. First-principles study of water reaction and H2 formation on UO2 (111) and (110) single crystal surfaces [J]. J Phys Chem C,2014,118:21935.
45 Lu G, Bernasek S L, Schwartz J. Oxidation of a polycrystalline titanium surface by oxygen and water [J]. Surf Sci,2000,458:80.
46 Chen J R, Hsiung G Y, Hsu Y J. Water adsorption-desorption on aluminum surface [J]. Appl Surf Sci,2001,169-170:679.
47 Henderson M A. The interaction of water with solid surfaces: Fundamental aspects revisited [J]. Surf Sci Rep, 2002,46:1.
48 Idriss H. Surface reactions of uranium oxide powder, thin films and single crystals [J]. Surf Sci Rep,2010,65:67.
49 Condon J B. Nucleation and growth in the hydriding reaction of uranium [J]. J Less Common Metal,1980,73:105.
50 Colmenares C, Howell R H, MacCrone R K. Application of positron annihilation, electron paramagnetic resonance and thermogravimetric techniques to the study of uranium oxidation, UCRL-90093[R]. US: Lawrence Livermore National Labaoratory,1984.
51 Howell R H, Colmenares C, McCreary T. Oxidation and hydriding of uranium studied by positron annihilation, UCRL-85925[R]. US: Lawrence Livermore National Labaoratory, 1983.
52 Haschke J M. Reactions of plutonium and uranium with water: Kinetics and potential hazards, La-13069-MS[R]. Los Alamos National Labaratory,1995.
53 Haschke J M. Corrosion of uranium in air and water vapor: Consequences for environmental dispersal [J]. J Alloys Compd,1998,278:149.
54 Haschke J M, Allen T H, Morales L A. Reactions of plutonium dioxide with water and hydrogen-oxygen mixtures: Mechanisms for corrosion of uranium and plutonium[J]. ChemInform,2001,32(13):78.
55 Haschke J M,Allen T H,Stakebake J L. Reaction kinetics of plutonium with oxygen, water, and humid air: Moisture enhancement of the corrosion Rate[J]. J Alloys Compd, 1996,243(1-2):23.
56 Weirick L J. The oxidation of uranium in low partial pressures of oxygen and water vapor at 100°C, SAND83-0618[R]. Sandia National Laboratories,1960.
57 McGillivray G W. Studies of the kinetics and mechanism of the oxidation of uranium by dry and moist air A model for determining the oxidation rate over a wide range of temperatures and water vapour pressures[J]. J Nucl Mater, 1994,208(1-2):81.
[1] 曹琛, 郑山锁, 胡卫兵. 酸雨环境下混凝土结构性能研究综述[J]. 材料导报, 2019, 33(11): 1869-1874.
[2] 杨贵荣,宋文明,董雪娇,张玉福,王富强,李 健,马 颖. CO2分压对20#钢在CO2/H2O气液两相塞状流中腐蚀行为的影响[J]. 《材料导报》期刊社, 2018, 32(9): 1557-1563.
[3] 高礼雄,丁汝茜,姚燕,荣辉,王海良,张磊. 混凝土的微生物腐蚀:机理、影响因素、评价指标及防护技术[J]. 《材料导报》期刊社, 2018, 32(3): 503-509.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed