Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 3090-3098    https://doi.org/10.11896/j.issn.1005-023X.2018.17.023
  高分子与聚合物基复合材料 |
木塑复合材料功能化改性研究进展
杨守禄1,2, 罗莎2, 章磊2, 姬宁1, 李丹1, 吴义强2
1 贵州省林业科学研究院,贵阳 550005;
2 中南林业科技大学材料科学与工程学院,长沙 410004
An Overview on Functionalization Modification of Wood-plastic Composites
YANG Shoulu1,2, LUO Sha2, ZHANG Lei2, JI Ning1, LI Dan1, WU Yiqiang2
1 Guizhou Academy of Forestry, Guiyang 550005;
2 School of Materials Science and Engineering, Central South University of Forestry & Technology, Changsha 410004
下载:  全 文 ( PDF ) ( 3142KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 木塑复合材料(WPC)是采用木质材料和塑料加工制备而成的一种绿色、环境友好新型材料,具有强度高、力学性能好、可循环使用及成本低等优势,被广泛应用于建筑材料、室内装饰材料、包装及运输材料和文化体育等领域。WPC不仅解决了废弃木质纤维材料综合利用率低及处理废弃木质纤维材料带来的环境污染等问题,而且有助于缓解废旧塑料引发的“白色污染”等重大环境问题,是废弃木质纤维和废旧塑料再生利用的一个趋势,具有广阔的市场空间和应用前景,已成为当今木质材料和塑料加工领域的研究热点之一。
   然而,WPC中的木质材料和塑料都是易燃物质,且燃烧产生的烟易造成人员伤亡;WPC使用过程中容易受到自然环境的影响,显著降低其物理力学性能及耐久性能;同时,由于WPC中含有木质材料,使用过程中容易遭受微生物的侵袭和破坏,导致材料变质而影响使用,甚至危害人体健康。以上缺陷严重影响其使用范围和使用寿命。
   近年来,研究者们致力于改善WPC的阻燃抑烟、耐老化、耐候及抗菌性能,取得了显著的成果。在实现阻燃抑烟、耐老化、耐候和抗菌功能化WPC时应用较为广泛的方法包括添加改性剂、对木质材料或塑料基体进行预处理、对WPC表面进行改性处理等。由于添加改性剂和对WPC进行表面处理具有操作简单、成本低等优势,已成为实现WPC功能化最常用的方法,可广泛用于WPC的加工。常用的阻燃抑烟剂包括聚磷酸胺(APP)、次磷酸铝(AHP)、纳米金属化合物、金属氢氧化物及含氮磷化合物等,耐老化剂、耐候剂包括受阻胺光稳定剂、紫外吸收剂、紫外线稳定剂及颜料等,抗菌剂包括纳米二氧化钛、纳米粘土、硼酸锌等。WPC表面改性处理主要是表面涂刷功能性涂料或接枝功能性试剂。目前,WPC的功能化研究集中于单一功能的增强,多功能的WPC有待进一步研究。
   WPC功能化改性是拓宽其应用范围、延长使用寿命和提高安全使用性能的关键。本文综述了WPC阻燃抑烟改性、耐老化和耐候改性及抗菌改性等功能化改性的研究进展,介绍了WPC的阻燃抑烟、耐老化、耐候及抗菌性能等功能表征手段,并对其发展趋势进行了展望,提出了WPC功能化改性亟待解决的难题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨守禄
罗莎
章磊
姬宁
李丹
吴义强
关键词:  木塑复合材料  阻燃抑烟  耐老化耐候  抗菌  功能化改性    
Abstract: Wood-plastic composites (WPC), a novel species of green and environment-friendly materials which are typically comprised of wood or other natural lignocellulosic fibers in a thermoplastic matrix, have found application in various fields, such as construction materials, indoor decoration materials, packaging and transportation materials, etc. due to their satisfactory perfor-mances like high strength, good mechanical properties, renewability and low production cost. The mass production of WPC cannot only solve both the problems of low comprehensive utilization rate of waste lignocellulosic fibrous materials and the corresponding environmental pollution from disposing of recycled woody materials, but also mitigate “white pollution” caused by waste plastics. WPC, a hot spot in wood and plastics processing, have become a substantial trend in the use of recycled wood and plastic materials and displayed extensive market potential and application prospect.
   Nevertheless, the wood and plastics in WPC are flammable materials which generate hazardous smoke while burning. The durability of WPC is easily affected by ambient climate conditions, including UV light, moisture, temperature changes and so on. Meanwhile, the high hydrophilicity of wood materials in WPC make them susceptible towards various biotic degradation factors and prone to microbial decay, which may seriously affect the uses, even harm to our health. These inadequacies of WPC deteriorate its perfor-mance, and restrict significantly its use and service life.
   The researchers worked together to improve the flame retardancy, weathering resistance, and antimicrobial property of WPC in recent years. The use of additives, the surface pretreatment of wood or plastics matrix, and the WPC surface modification are the common means and methods for functionalization modification, in which the use of additives and the WPC surface modification are widely used in WPC processing owing to their advantages of simple operation and low cost. Ammonium polyphosphate (APP), aluminium hypophosphite (AHP), nano-metallic compounds, metal hydroxides, and nitrogen-and phosphorus-containing compounds are commonly used flame retardant and smoke suppression agents in WPC processing. The problem in the weatherability of WPC can be partly solved by the incorporation of hindered amine light stabilizers (HALS), ultraviolet-absorbents (UAS), UV-stabilizers and pigments and so on. Nano-titania, nanoclay, zinc oxide etc. are also employed to impart antimicrobiality to WPC. For the WPC surface modification, functional coatings or functional reagents can be brushed or grafted on the composites surface. The WPC researches are focused on promoting the single function at present, while multifunctionalized WPC deserves further study.
   Functionalization modification is a key technique for expanding the application range, prolonging the usage life, and improving the service safety of WPC. This paper reviews the recent progress in modification techniques with respect to flame retardancy and smoke suppression, anti-aging and weathering resistance, and antimicrobiality of WPC, as well as the properties characterization methodology for the correspondingly acquired functions. It also sketches out the future prospect and the challenge that fetters the development of functionalization modification of WPC.
Key words:  wood-plastic composite    flame retardancy and smoke suppression    anti-aging and weathering resistance    antimicrobiality    functionalization modification
                    发布日期:  2018-09-19
ZTFLH:  S784  
  TB332  
  TQ321.2  
基金资助: 贵州省自然科学基金(黔科合基础[2016]1084);贵州省林业科研课题(黔林科合J字[2015]17号);贵州省科技支撑计划项目(黔科合支撑[2018]2196);贵州省科技重大专项(黔科合重大专项字[2014]6020号;黔科合重大专项字[2015]6008号)
通讯作者:  吴义强: 男,1967年生,博士,教授,研究方向为木材科学、生物质复合材料 E-mail:wuyq0506@126.com   
作者简介:  杨守禄:男,1987生,博士研究生,助理研究员,研究方向为生物质复合材料、木竹材功能性改良
引用本文:    
杨守禄, 罗莎, 章磊, 姬宁, 李丹, 吴义强. 木塑复合材料功能化改性研究进展[J]. 材料导报, 2018, 32(17): 3090-3098.
YANG Shoulu, LUO Sha, ZHANG Lei, JI Ning, LI Dan, WU Yiqiang. An Overview on Functionalization Modification of Wood-plastic Composites. Materials Reports, 2018, 32(17): 3090-3098.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.023  或          http://www.mater-rep.com/CN/Y2018/V32/I17/3090
1 李坚.木材科学(第三版)[M].北京:科学出版社,2014:402.
2 Kumar V, Tyagi L, Sinha S. Wood flour-reinforced plastic compo-sites: A review[J].Reviews in Chemical Engineering,2011,27(5-6):253.
3 Min K, Yang B, Miao J B, et al. Thermorheological properties and thermal stability of polyethylene/wood composites[J].Journal of Macromolecular Science, Part B,2013,52(8):1115.
4 Chindaprasirt P, Hiziroglu S, Waisurasingha C, et al. Properties of wood flour/expanded polystyrene waste composites modified with diammonium phosphate flame retardant[J].Polymer Composites,2015,36(4):604.
5 Ren D, Yu Y. Weathering resistance of wood-plastic composites[J].World Forestry Research,2013,26(6):39(in Chinese).
任丹,余雁.木塑复合材料耐候性能研究进展[J].世界林业研究,2013,26(6):39.
6 Bazant P, Munster L, Machovsky M, et al. Wood flour modified by hierarchical Ag/ZnO as potential filler for wood-plastic composites with enhanced surface antibacterial performance[J].Industrial Crops & Products,2014,62:179.
7 Li S S, Lv Q, Zhang Q F, et al. Study on effect of APP on flame retardancy of wood-plastic based PE composite[J].China Plastics Industry,2009,37(12):60(in Chinese).
李珊珊,吕群,张清锋,等.APP在PE基木塑复合材料中的阻燃作用研究[J].塑料工业,2009,37(12):60.
8 Prabhakar M N, Rehman Shah A U, Song J I. Improved flame-retardant and tensile properties of thermoplastic starch/flax fabric green composites[J].Carbohydrate Polymers,2017,168:201.
9 Chen W, Zhao F, Guo Z L, et al. Effects of aluminum phosphate on the fire-retardant and mechanical properties of wood flour/HDPE composite[J].Polymeric Materials Science & Engineering,2017,33(3):111(in Chinese).
陈婉,赵凡,郭知理,等.次磷酸铝对木粉/高密度聚乙烯复合材料阻燃及力学性能的影响[J].高分子材料科学与工程,2017,33(3):111.
10 Ding H, Huang K, Li S, et al. Flame retardancy and thermal degradation of halogen-free flame-retardant biobased polyurethane compo-sites based on ammonium polyphosphate and aluminium hypophosphite[J].Polymer Testing,2017,62:325.
11 Zhao P P, Li L P. Ammonium polyphosphate/aluminum hypophosphite compound flame retardant polypropylene/wood flour composites[J].Materials Review,2017,31(6):115(in Chinese).
赵盼盼,李丽萍.聚磷酸铵/次磷酸铝协效阻燃聚丙烯/木粉复合材料[J].材料导报,2017,31(6):115.
12 Zhu D Q, Zheng S Y, Sheng Y. Flame-retardant synergistic effect of synergists on intumescent flame-retardant wood flour-polypropylene composites[J].Chinese Journal of Applied Chemistry,2017,34(2):195(in Chinese).
朱德钦,郑守扬,生瑜.协效剂对膨胀阻燃聚丙烯基木塑复合材料的阻燃增效研究[J].应用化学,2017,34(2):195.
13 Zhang J L, Zhou W J, Wang X Q, et al. Study on preparation and properties of novel flame-retardant wood-plastic composites[J].China Plastics Industry,2014,42(1):112(in Chinese).
张敬礼,周文君,王雪芹,等.新型阻燃木塑复合材料的制备及其性能研究[J].塑料工业,2014,42(1):112.
14 Chen R, Li L P. Study on APP/rice straw/nano silica/HDPE compo-site[J].New Chemical Materials,2016(12):59(in Chinese).
陈然,李丽萍.聚磷酸铵/纳米SiO2阻燃水稻秸秆/聚乙烯复合材料的研究[J].化工新型材料,2016(12):59.
15 Zheng J, Li B, Guo C, et al. Flame-retardant properties of acrylonitrile-butadiene-styrene/wood flour composites filled with expandable graphite and ammonium polyphosphate[J].Journal of Applied Polymer Science,2014,131(10):376.
16 Sertsova A A, Marakulin S I, Yurtov E V. Metal compound nanoparticles: Flame retardants for polymer composites[J].Russian Journal of General Chemistry,2017,87(6):1395.
17 Baysal E, Yalinkilic M K, Altinok M, et al. Some physical, biological, mechanical, and fire properties of wood polymer composite (WPC) pretreated with boric acid and borax mixture[J].Construction & Building Materials,2007,21(9):1879.
18 Hämäläinen K, Kärki T. Effects of wood flour modification on the fire retardancy of wood-plastic composites[J].European Journal of Wood & Wood Products,2014,72(6):703.
19 Tang Y, Liang B. Study on wood powder coated and the flame retar-dant wood plastic composite[J].New Chemical Materials,2017(1):231(in Chinese).
唐禹,梁兵.木粉包覆及其对阻燃木塑复合材料的研究[J].化工新型材料,2017(1):231.
20 Mouritz A P, Gibson A G. Fire properties of polymer composite materials[M].Berlin: Springer Netherlands,2006:273.
21 Pochiraju K V, Tandon G P, Schoeppner G A. Long-term durability of polymeric matrix composites[M].US:Springer,2012:55.
22 Ratanawilai T, Homkhiew C, Thongruang W. Optimising formulation on weathering resistance of recycled polypropylene and rubberwood flour composites[J].Journal of Tropical Forest Science,2017,29(2):215.
23 Homkhiew C, Ratanawilai T, Thongruang W. Effects of natural weathering on the properties of recycled polypropylene composites reinforced with rubber wood flour[J].Industrial Crops & Products,2014,56(3):52.
24 Shen Y, Gong Y C, Wang Y, et al. Natural weathering effects on the performance of wood-plastic flooring[J].Journal of Southwest Forestry University,2015,35(2):100(in Chinese).
沈洋,龚迎春,王云,等.自然气候老化对木塑地板性能的影响[J].西南林业大学学报,2015,35(2):100.
25 Deng Y, Sheng Q Q. Effects of photo stabilizers on aging properties of WPC[J].Journal of Southwest Forestry University,2016,36(6):154(in Chinese).
邓云,盛清泉.光稳定剂对木粉/回收聚乙烯复合材料老化性能的影响[J].西南林业大学学报,2016,36(6):154.
26 Li H Y, Zhou D G, Wu Q L. Properties of wood plastic composites with different photo-stabilizer and/or Zinc borate[J].Journal of Zhejiang Forestry College,2015,32(6):914(in Chinese).
李慧媛,周定国,吴清林.硼酸锌/紫外光稳定剂复配对高密度聚乙烯基木塑复合材料光耐久性的影响[J].浙江农林大学学报,2015,32(6):914.
27 Peng Y, Liu R, Cao J, et al. Antiweathering effects of vitamin E on wood flour/polypropylene composites[J].Polymer Composites,2015,35(11):2085.
28 Peng Y, Liu R, Cao J, et al. Effects of vitamin E combined with antioxidants on wood flour/polypropylene composites during accelerated weathering[J].Holzforschung,2015,69(1):113.
29 Kobayashi M, Kiguchi M, Kataoka Y, et al. Effects of solvolysis wood additives on weatherability of wood plastic composites(WPCs)[J].MokuzaiHozon,2014,40(1):8.
30 Yang T, Noguchi T, Isshiki M, et al. Effect of titanium dioxide particles on the surface morphology and the mechanical properties of PVC composites during QUV accelerated weathering[J].Polymer Compo-sites,2016,37(12):3391.
31 Ibach R E, Clemons C M. Wood protection (session III)[M].Madison, Forest Products Society,2006:139.
32 Wei L, Mcdonald A G, Freitag C, et al. Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites[J].Polymer Degradation & Stability,2013,98(7):1348.
33 Peng Y, Guo X, Cao J, et al. Effects of two staining methods on color stability of wood flour/polypropylene composites during accelerated UV weathering[J].Polymer Composites,2015,38(6):1194.
34 Chen Y, Stark N M, Tshabalala M A, et al. Weathering characteristics of wood plastic composites reinforced with extracted or delignified wood flour[J].Materials,2016,9(8):1.
35 Ljerka Kratofil Krehula, Zvonimir Katanic' , Anita Ptiek Siroic' , et al. Weathering of high-density polyethylene-wood plastic composites[J].Journal of Wood Chemistry & Technology,2014,34(1):39.
36 Nicholas J, Mohamed M, Dhaliwal G S, et al. Effects of accelerated environmental aging on glass fiber reinforced thermoset polyurethane composites[J].Composites Part B Engineering,2016,94:370.
37 Turku I, Ka Rki T. Accelerated weathering of wood-polypropylene composite containing carbon fillers[J].Journal of Composite Materials,2016,50(10):1387.
38 Lee D, Kim S, Kim B J, et al. Effect of Nano-CaCO3 and talc on property and weathering performance of PP composites[J].International Journal of Ploymer Science,2017,2:1.
39 Li Q, Gao X, Cheng W, et al. Effect of modified red pottery clay on the moisture absorption behavior and weatherability of polyethylene-based wood-plastic composites[J].Materials,2017,10(2):111.
40 Xue J, He C X, Hou R L, et al. Effects of chlorothalonil on fungus resistance of wheat straw/PP composites[J].Synthetic Materials Aging & Application,2013,42(1):6(in Chinese).
薛娇,何春霞,侯人鸾,等.百菌清对麦秸秆/PP复合材料耐腐蚀性能的影响[J].合成材料老化与应用,2013,42(1):6.
41 Tascioglu C, Yoshimura T, Tsunoda K. Biological performance of wood-plastic composites containing zinc borate: Laboratory and 3-year field test results[J].Composites Part B Engineering,2013,51(51):185.
42 He C X, Fu J J, Xue J, et al. Effects of zinc borate contents on fungus corrosion resistance of wheat straw/PP composites[J].Acta Materiae Compositae Sinica,2015:962(in Chinese).
何春霞,付菁菁,薛娇,等.硼酸锌含量对麦秸秆/PP复合材料耐霉菌腐蚀性能的影响[J].复合材料学报,2015,32(04):962.
43 Jandikova G, Holcapkova P, Hrabalikova M, et al. Antimicrobial modification of polyproplylene with silver nanoparticles immobilized on zinc stearate[J].Materials & Technologies,2016,50(6):869.
44 Devi R R, Maji T K. Effect of nanofillers on flame retardancy, chemical resistance, antibacterial properties and biodegradation of wood/styrene acrylonitrile co-polymer composites[J].Wood Science & Techno-logy,2013,47(6):1135.
45 Bari E, Taghiyari H R, Schmidt O, et al. Effects of nano-clay on biological resistance of wood-plastic composite against five wood-deteriorating fungi[J].Maderas Ciencia Y Tecnologia,2015,17(1):205.
46 Xu K M, Li K F, Feng J. Study on surface anti-bacterial function of composites made from chitosan, Chinese fir powder and PVC[J].Journal of Central South University of Forestry & Technology,2015,2015(1):117(in Chinese).
徐开蒙,李凯夫,冯静.壳聚糖/杉木粉/PVC复合材料表面抗菌功能化研究[J].中南林业科技大学学报,2015(1):117.
47 Kuka E, Cirule D, Kajaks J, et al. Fungal degradation of wood plastic composites made with thermally modified wood residues[J].Key Engineering Materials,2017,721:8.
48 Deng J, Wang L, Liu L, et al. Developments and new applications of UV-induced surface graft polymerizations[J].Progress in Polymer Science,2009,34(2):156.
49 Yang W L, Wang Q W, Li L J, et al. Interface bacteriostasis of wood-plastic composites modified by UV-irradiation grafting[J].Journal of Northeast Forestry University,2014(10):111(in Chinese).
杨万丽,王清文,李陆军,等.紫外光接枝改性木塑复合材料的表面抑菌性[J].东北林业大学学报,2014(10):111.
50 Wang L, Chen S S, Dcw T, et al. Enhancing anti-microbial properties of wood-plastic composites produced from timber and plastic wastes[J].Environmental Science & Pollution Research,2017,24(13):12227.
51 Li N, Bao Y Z, Weng S B, et al. Study on flame resistance of inorga-nic encapsulated red phosphorus application in wood-plastic composite[J].China Forest Products Industry,2016,43(7):28(in Chinese).
李娜,鲍远志,翁世兵,等.微胶囊红磷在木塑复合材料中的阻燃研究[J].林产工业,2016,43(7):28.
52 Guo C G, Chen Y X, Bai G, et al. Study on performance of flame retarded wood plastic composites with modified carbon black(M-CB)/expandable graphite(EG)/ammonium polyphosphate(APP)[J].Materials Review B:Research Papers,2015,29(8):68(in Chinese).
郭垂根,陈永祥,白钢,等.改性炭黑/膨胀石墨/聚磷酸铵阻燃木塑复合材料的性能研究[J].材料导报:研究篇,2015,29(8):68.
53 Bai X Y, Wang Q W. Influence of zinc borate on smoke emission of polyvinyl chloride wood-plastics composite[J].Fire Science & Techno-logy,2015(4):424(in Chinese).
白晓艳,王清文.硼酸锌对PVC木塑复合材料的产烟影响[J].消防科学与技术,2015(4):424.
54 Wang W, Zhang W, Chen H, et al. Synergistic effect of synthetic zeolites on flame-retardant wood-flour/polypropylene composites[J].Construction & Building Materials,2015,79:337.
55 Xu B, Mei C T, Liu C Z, et al. Ultraviolet weathering properties of core-shell wood plastic composite with mixed light stabilizer[J].Engineering Plastics Application,2017,45(4):17(in Chinese).
徐兵,梅长彤,刘朝政,等.光稳定剂复配对核壳WPC抗紫外老化性能的影响[J].工程塑料应用,2017,45(4):17.
56 Stark N M, Matuana L M. Characterization of weathered wood-plastic composite surfaces using FTIR spectroscopy, contact angle, and XPS[J].Polymer Degradation & Stability,2007,92(10):1883.
57 Barton-Pudlik J, Czaja K, Grzymek M, et al. Evaluation of wood-polyethylene composites biodegradability caused by filamentous fungi[J].International Biodeterioration & Biodegradation,2017,118(C):10.
58 Xu K, Feng J, Zhong T, et al. Effects of volatile chemical components of wood species on mould growth susceptibility and termite attack resistance of wood plastic composites[J].International Biodeterioration & Biodegradation,2015,100(3):106.
59 Bharath K N, Basavarajappa S. Applications of biocomposite materials based on natural fibers from renewable resources: A review[J].Science & Engineering of Composite Materials,2016,23(2):123.
[1] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[2] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[3] 刘俊莉, 邵建真, 李军奇, 刘辉, 谢乔. 新型ZnO/BiOI杂化纳米花的合成及可见光驱动抗菌活性[J]. 材料导报, 2019, 33(2): 205-210.
[4] 李丹, 张忞灏, 廖佩姿, 谢远, 甄贺伟, 徐晓玲, 周祚万. 低维氧化锌晶面调控及催化抗菌活性研究进展[J]. 材料导报, 2019, 33(1): 56-64.
[5] 赵鸣岐, 黄威嫔, 胡米, 任科峰, 计剑. 生物医用材料表面高分子基涂层的功能化构筑[J]. 材料导报, 2019, 33(1): 27-39.
[6] 王迎军, 黄雪连, 陈军建, 梁阳彬, 熊梦华. 细菌感染微环境响应性高分子材料用于细菌感染性疾病的治疗[J]. 材料导报, 2019, 33(1): 5-15.
[7] 陈志, 孙聪, 朱亚楠, 葛明桥. 熔融纺丝制备的PET/锗复合纤维:负离子释放性能、远红外辐射性能及抗菌性能[J]. 《材料导报》期刊社, 2018, 32(8): 1333-1337.
[8] 张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
[9] 李森, 王清涛, 于华芹, 徐会君, 杜庆洋. 固相离子交换法制备高效载银分子筛抗菌剂及其抗菌性能[J]. 《材料导报》期刊社, 2018, 32(4): 539-544.
[10] 李旭飞, 车阳丽, 吕艳, 刘芳, 王永强, 赵朝成. 壳聚糖/无机物纳米复合材料在抗菌方面的研究进展[J]. 材料导报, 2018, 32(21): 3823-3830.
[11] 郑康, 郑敏, 黄鹏杰, 赵松铭, 沈凯旋. Cu2O/TiO2复合物的制备及抗菌和除氨气性能[J]. 材料导报, 2018, 32(20): 3504-3509.
[12] 于嘉伦, 徐丹, 任丹, 谢东梅, 高燕利. 橘皮还原法和硼氢化钠还原法制备的纳米银的结构和性能比较[J]. 材料导报, 2018, 32(20): 3489-3495.
[13] 包建民, 闫志英, 李优鑫. 微米级多孔聚苯乙烯-二乙烯苯微球的制备、改性及应用综述[J]. 材料导报, 2018, 32(17): 3060-3067.
[14] 王静, 王晓燕, 水中和, 冀志江, 赵春艳, 刘蕊蕊. 玻璃载银抗菌材料的Ag+溶出性质及与大肠杆菌作用机理[J]. 材料导报, 2018, 32(16): 2709-2714.
[15] 惠爱平, 马建中, 刘俊莉. 微波辅助水热法合成的可见光响应型Sm掺杂ZnO微晶的
光催化性能和抗菌活性*
[J]. 《材料导报》期刊社, 2017, 31(2): 13-19.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed