Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 5-15    https://doi.org/10.11896/cldb.201901001
  生物医学工程领域的高技术关键材料 |
细菌感染微环境响应性高分子材料用于细菌感染性疾病的治疗
王迎军1,2,3,4, 黄雪连1,2, 陈军建2,3, 梁阳彬1,2, 熊梦华1,2,3
1 华南理工大学生物医学科学与工程学院,广东省生物医学工程重点实验室,广州国际校区,广州 510006
2 国家人体组织功能重建工程技术研究中心,人体组织功能重建省部共建协同创新中心,广州 510006
3 生物医用材料与工程教育部重点实验室,广州 510006
4 广东省生物医学工程重点实验室,广州 510006
Bacterial Infection-microenvironment Responsive Polymeric Materials for the Treatment of Bacterial Infectious Diseases: a Review
WANG Yingjun1,2,3,4, HUANG Xuelian1,2, CHEN Junjian2,3, LIANG Yangbin1,2, XIONG Menghua1,2,3
1 School of Biomedical Science and Engineering, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou International Campus, Guangzhou 510006
2 Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006
3 Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006
4 Key Laboratory of Biomedical Engineering of Guangdong Province, Guangzhou 510006
下载:  全 文 ( PDF ) ( 3789KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自从1928年青霉素被发现以来,抗生素的使用极大降低了细菌感染性疾病的发病率和死亡率,拯救了数千万的生命。然而,随着抗生素的广泛使用及滥用,抗生素耐药问题已成为全球性公共卫生安全问题。此外,传统给药模式下的抗生素疗法存在多种问题:抗生素给药后被快速代谢从体内排出,只有少部分药物到达感染部位,生物利用率低,使得临床中往往需要大剂量给药、长周期治疗,这导致显著毒副作用;抗生素对生物膜内细菌治疗效果差,难以在胞内富集,且难以杀伤胞内存活细菌,导致慢性感染和复发性感染。
   针对传统抗生素给药模式存在的问题,利用纳米技术递送抗生素显示出很好的应用前景。纳米颗粒可以改善难溶药物的溶解性,改善抗生素的代谢动力学和组织分布,克服组织和细胞屏障。随着纳米药物输送体系研究的不断深入,研究者们利用细菌感染后微环境中致病因子(如磷酸酶、磷脂酶、蛋白酶、毒素等)致病因子表达显著增高、pH值下降呈微酸性、局部温度上升等,设计刺激响应性高分子纳米材料,用于抗生素的递送。该策略使药物选择性在细菌感染部位释放,显著改善药物生物利用率,提高药物对生物膜相关感染、胞内感染等感染性疾病的治疗效果,并降低药物的毒副作用。
   然而,纳米颗粒递送抗生素对耐药细菌特别是多重耐药菌感染性疾病的治疗仍存在很大的局限性。针对抗生素的耐药问题,抗菌肽及其类似物由于具有广谱抗菌活性及低致耐药性而受到广泛关注。然而,这类抗菌剂具有强细胞毒性,限制了其临床应用。研究者利用上述细菌感染微环境,设计对酸性环境或细菌酶响应的抗菌高分子材料,使其在正常组织中呈现低细胞毒性,而在细菌感染环境下被活化或者暴露出抗菌肽,从而高效杀伤耐药细菌。
   本文介绍了传统抗生素疗法存在的问题,总结了近10年来感染微环境响应性高分子纳米颗粒作为抗生素递送载体、感染微环境响应性的抗菌高分子的设计及在细菌感染性疾病治疗中的应用,并展望感染微环境响应性高分子材料的发展趋势及前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王迎军
黄雪连
陈军建
梁阳彬
熊梦华
关键词:  细菌感染  微环境  响应性  纳米颗粒  抗菌高分子  耐药菌  抗生素    
Abstract: Since the discovery of penicillin in 1928, the application of antibiotics has greatly reduced the morbidity and mortality of bacterial infectious di-seases, and numerous lives are survived from bacterial infection. However, with the widespread use and abuse of antibiotics, antimicrobial resistance has become a global public health issue. In addition, there are several problems that traditional antibiotic therapies encounter. Specifi-cally speaking, the antibiotics are rapidly metabolized and excreted from body after administration, only a few drugs reach the infected site and the bioavailability was low. In this case, high doses and long period treatments are required in clinical application, which lead to notable side effects. Besides, the poor therapeutic effect of antibiotics against biofilm infections and intracellular infections is also a pressing issue, leading to chronic infections and recurrent infections.
In view of the problems existing in the traditional antibiotic delivery mode, the delivery of antibiotics by nanoparticles is proposed and shows great potential in the treatment of bacterial infection, which can improve the solubility of poorly soluble drugs, improve the pharmacokinetics and biodistribution of antibiotics, and overcome the tissue and cell barriers. Inspired by the fact that the physiological and physical microenvironment of bacterial infection sites is different from normal tissues, polymeric nanoparticles, that are responsive to the unique infectious microenvironments, have been developed to deliver antibiotics. These strategies remarkably improve the bioavailability and biodistribution of antibiotics, enhance the therapeutic efficacy of antibiotics against intracellular and biofilm infections, as well as attenuate the side effects.
However, the delivery of antibiotics by nanoparticles shows limitations in the treatments of drug-resistant bacteria and especially for multidrug-resistant bacteria. Aiming at the problems of antibiotic resistance, antimicrobial peptides and their analogues have attracted extensive attention worldwide, since they exhibit broad-spectrum antibacterial activity with the less like-hood to develop drug resistance. Nevertheless, the cytotoxicity of these antibacterial agents hinders their clinical applications. For the sake of solving this problem, researchers designed responsive antimicrobial polymers that exhibited low toxicity in normal tissues, and transformed to active form to effectively kill drug-resistant bacteria when triggered by the acid infectious environment or bacterial enzymes in the infectious environment.
In this review, we gave a brief introduction on the existing issues on traditional antimicrobial therapy, and an overview and current perspectives on the development infection-microenvironment responsive polymeric nanoparticles as carriers of antibiotics and the infection-responsive antimicrobial polymers for the treatment of bacterial infectious diseases over the past decade.
Key words:  bacterial infection    microenvironment    responsiveness    nanoparticles    antimicrobial polymers    drug-resistant bacteria    antibiotic
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  TB34  
  O63  
基金资助: 国家自然科学基金面上项目(51873070;U1801252);广东省自然科学基金-自由申请(2018A030313110);广州市科技计划项目(201804020060);中组部“千人计划”青年项目;中央高校基本科研业务费
作者简介:  王迎军,中国工程院院士,国际生物材料科学与工程学会FELLOW,华南理工大学生物医学科学与工程学院首席科学家、国家人体组织功能重建工程技术研究中心主任。熊梦华,华南理工大学生物医学科学与工程学院教授、博士研究生导师,xiongmh@scut.edu.cn。
引用本文:    
王迎军, 黄雪连, 陈军建, 梁阳彬, 熊梦华. 细菌感染微环境响应性高分子材料用于细菌感染性疾病的治疗[J]. 材料导报, 2019, 33(1): 5-15.
WANG Yingjun, HUANG Xuelian, CHEN Junjian, LIANG Yangbin, XIONG Menghua. Bacterial Infection-microenvironment Responsive Polymeric Materials for the Treatment of Bacterial Infectious Diseases: a Review. Materials Reports, 2019, 33(1): 5-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901001  或          http://www.mater-rep.com/CN/Y2019/V33/I1/5
1 Mintzer M A, Dane E L, O’Toole G A, et al. Molecular Pharmaceutics,2012,9(3),342.2 Ning X, Lee S, Wang Z, et al. Nature Materials,2011,10,602.3 Viswanathan V K, Linsey J S. In: 39th IEEE Frontiers in Education Conference, Imagining and Engineering Future CSET Education. San Antonio, TX, USA,2009,pp.6.4 CDC. Mmwr Morbidity & Mortality Weekly Report,1999,48,326.5 Levy S B, Marshall B. Nature Medicine,2004,10,S122.6 O’Neill J. Nature Reviews Drug Discovery,2016,15,526.7 WHO. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization,2017.8 Ilias K, Helen G. Expert Opinion on Pharmacotherapy,2014,15(10),1351.9 Pogue J M, Lee J, Marchaim D, et al. Clinical Infectious Diseases,2011,53(9),879.10 Sommer M O, Dantas G. Current Opinion in Microbiology,2011,14(5),556.11 Flemming H C, Wingender J. Nature Reviews Microbiology,2010,8(9),623.12 Hallstoodley L, Costerton J W, Stoodley P. Nature Reviews Microbiology,2004,2(2),95.13 Davies D. Nature Reviews Drug Discovery,2003,2(2),114.14 Mah T F C, O’Toole G A. Trends in Microbiology,2001,9(1),34.15 Xiong M H, Bao Y, Yang X Z, et al. Advanced Drug Delivery Reviews,2014,78,63.16 Costerton J W, Stewart P S, Greenberg, E P. Science,1999,284(5418),1318.17 Suci P A, Mittelman M W, Yu F P, et al. Antimicrobial Agents and Chemotherapy,1994,38(9),2125.18 Hoyle B D, Wong C K, Costerton J W. Canadian Journal of Microbiology,1992,38(11),1214.19 de Carvalho C C. Recent Patents on Biotechnology,2007,1(1),49.20 Weiss G, Schaible U E. Immunological Reviews,2015,264(1),182.21 Pintoalphandary H, Andremont A, Couvreur P. International Journal of Antimicrobial Agents,2000,13(3),155.22 Breedlove B, Cohen M L. Holt, Rinehart and Winston,2014,20(7),1268.23 WHO. Antimicrobial resistance: global report on surveillance. World Health Organization,2014,pp.257.24 Tenover F C. American Journal of Medicine,2006,34(5,Supplement),S3.25 Poole K. Journal of Pharmacy & Pharmacology,2001,53(3),283.26 Rep M M M W. Morbidity & Mortality Weekly Report,2002,51(26),565.27 Oh J K, Drumright R, Siegwart D J, et al. Progress in Polymer Science,2008,33(4),448.28 Fleige E, Quadir M A, Haag R. Advanced Drug Delivery Reviews,2012,64(9),866.29 Gao W, Chan J M, Farokhzad O C. Molecular Pharmaceutics,2010,7(6),1913.30 Gao W, Chen Y, Zhang Y, et al. Advanced Drug Delivery Reviews,2018,127,46.31 Yamamoto S, Yamazaki S, Shimizu T, et al. Medicine,2016,95(21),e3628.32 Mercier R C, Stumpo C, Rybak M J. Journal of Antimicrobial Chemothe-rapy,2002,50(1),19.33 Radovic-Moreno A F, Lu T K, Puscasu V A, et al. ACS Nano,2012,6(5),4279.34 Chu L, Gao H, Cheng T, et al. Chemical Communications,2016,52(37),6265.35 Liu Y, Busscher H J, Zhao B,et al. ACS Nano,2016,10(4),4779.36 Liu Y, Mei H C V D, Zhao B, et al. Advanced Functional Materials,2017,27(44),1701974.37 Li L L, Xu J H, Qi G B, et al. ACS Nano,2014,8(5),4975.38 Xiong M H, Wu J, Wang Y C, et al. Macromolecules,2009,42(4),893.39 Xiong M H, Li Y J, Bao Y, et al. Advanced Materials,2012,24(46),6175.40 Xiong M H, Bao Y, Yang X Z, et al. Journal of the American Chemical Society,2012,134(9),4355.41 Li Y, Liu G, Wang X, et al. Angewandte Chemie International Edition,2016,55(5),1760.42 Wright G D. Chemical Communications,2011,47(14),4055.43 Xiong M, Lee M W, Mansbach, et al. Proceedings of the National Academy of Sciences USA,2015,112(43),13155.44 Kazemzadeh-Narbat M, Kindrachuk J, Duan K, et al. Biomaterials,2010,31(36),9519.45 Ng V W, Ke X, Lee A L, et al. Advanced Materials,2013,25(46),6730.46 Jürgen Harder, Zasloff M. Antimicrobial Peptides: Role in Human Health and Disease. Cham Springer,2016.47 Marr A K, Gooderham W J, Hancock R E. Current Opinion in Pharmacology,2006,6(5),468.48 Fjell C D, Hiss J A, Hancock R E W, et al. Nature Reviews Drug Disco-very,2012,11(1),37.49 Xiong M H, Bao Y, Xu X, et al. Proceedings of the National Academy of Sciences USA,2017,114(48),12675.50 Xiong M H, Han Z, Song Z, et al. Angewandte Chemie International Edition,2017,56,10826.51 Xu L, He C, Hui L, et al. ACS Applied Materials & Interfaces,2015,7(50),27602.52 Jiang Y, Yang X, Zhu R, et al. Macromolecules,2013,46(10),3959.53 Qi G B, Zhang D, Liu F H, et al. Advanced Materials,2017,29(36),1703461.54 Komnatnyy V V, Chiang W C, Tolker-Nielsen T, et al. Angewandte Chemie International Edition,2014,53(2),439.55 Cado G, Aslam R, Séon L, et al. Advanced Functional Materials,2013,23(38),4801.
[1] 王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
[2] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[3] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[4] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[5] 王剑豪, 薛松柏, 吕兆萍, 王刘珏, 刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[6] 胡燕燕, 杨春林, 乔慧娜, 欧梅桂. 钆基稀土纳米颗粒的制备及应用研究进展[J]. 材料导报, 2019, 33(13): 2243-2251.
[7] 谢丽娜, 罗聪, 吴嘉敏, 王昌绚, 邬均. 利用均匀磁场提高聚乙烯亚胺-Fe3O4纳米颗粒复合物的磁转染效果[J]. 《材料导报》期刊社, 2018, 32(8): 1247-1251.
[8] 陈可, 马会茹. pH响应性光子晶体[J]. 《材料导报》期刊社, 2018, 32(7): 1094-1099.
[9] 任曼飞, 黄国强. 用于高温蓄热介质的二氧化硅纳米颗粒/三元碳酸盐复合熔盐纳米流体的制备方法对比[J]. 材料导报, 2018, 32(23): 4067-4071.
[10] 杨磊,王乐民,李佳星,范晓光,郝浩然,裴红杰,伞迦楠,薛钧文. P(NIPAAm-co-AAPBA-co-HPM-co-TMSPM)四元共聚物 的温度及葡萄糖响应行为[J]. 《材料导报》期刊社, 2018, 32(12): 1959-1966.
[11] 许连强,唐志雄,唐少龙,都有为. 新型溶胶-凝胶法制备CoPd合金纳米颗粒及其磁性能表征[J]. 《材料导报》期刊社, 2018, 32(10): 1587-1591.
[12] 谭永涛, 孔令斌, 康龙, 冉奋. Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 《材料导报》期刊社, 2018, 32(1): 47-50.
[13] 孙舒鑫, 焦体峰, 张乐欣. 载银纳米颗粒多响应性复合水凝胶研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 62-68.
[14] 娄冬冬, 张丽莎, 王海风, 陈志钢. 具有三维网状结构的石墨相氮化碳/还原氧化石墨烯/钯复合材料的合成及可见光催化性能*[J]. 《材料导报》期刊社, 2017, 31(20): 1-5.
[15] 张栋, 肖淼, 马迅, 程国胜, 张兆春. 一种在硅材料表面组装金纳米颗粒的新方法*[J]. 《材料导报》期刊社, 2017, 31(2): 25-28.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed