Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4067-4071    https://doi.org/10.11896/j.issn.1005-023X.2018.23.006
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
用于高温蓄热介质的二氧化硅纳米颗粒/三元碳酸盐复合熔盐纳米流体的制备方法对比
任曼飞, 黄国强
天津大学化工学院,天津 300350
Silica Nanoparticles/Ternary Carbonate Composite Molten Salt Nanofluid Serving as High-temperature Heat Storage Medium: a Comparative Study on the Preparation Methodology
REN Manfei, HUANG Guoqiang
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350
下载:  全 文 ( PDF ) ( 1791KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 熔盐作为一种高效的蓄热介质,其蓄热能力由比热容大小决定,添加纳米颗粒可以有效提高其比热容。本研究以三元碳酸盐(碳酸钾、碳酸锂、碳酸钠)为基盐,于超声振荡条件下将二氧化硅纳米颗粒分散在盐溶液中,通过三种不同结晶方法蒸发水分制得了二氧化硅纳米颗粒/三元碳酸盐复合熔盐纳米流体。对比三元碳酸盐与直接结晶法、搅拌结晶法和逐滴结晶法制备的熔盐复合纳米流体的热物性,获得了最佳结晶方法并探究了比热容提高机制。使用差示扫描量热仪、热分析仪和扫描电子显微镜分别测量和表征了样品的比热容、分解温度及表面微观结构。结果表明,逐滴结晶法是最佳的结晶方法,在450~470 ℃范围内,该法制备的复合熔盐纳米流体的比热容与基盐相比提高了40.59%~44.88%,分解温度高达806.90 ℃,是良好的高温蓄热介质。熔盐在纳米颗粒诱导下形成棒状纳米结构,比表面积和比表面能明显增大,从而使熔盐纳米流体的比热容显著提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任曼飞
黄国强
关键词:  二氧化硅纳米颗粒  碳酸熔盐  纳米流体  超声振荡  直接结晶  搅拌结晶  逐滴结晶  比热容  高温蓄热介质    
Abstract: Molten salt is a highly efficient heat storage medium, and its heat storage capacity strongly depends on its specific heat capacity, which can be improved effectively by adding nanoparticles. In this paper, silica nanoparticles were dispersed in a ternary carbonate salt (K2CO3, Li2CO3, Na2CO3) solution with the assistance of ultrasonic oscillation, and three different crystallization methods, i.e. direct crystallization, stirring crystallization and dropwise crystallization, were used separately to prepare the silica nano-particles/ternary carbonate composite molten salt nanofluids. We then comparatively studied the thermophysical properties of the resultant nanofluids to obtain the optimum crystallization methodology, and moreover, to explore the specific heat capacity enhancement mechanism. In the experiment, we used differential scanning calorimeter, thermal analyzer and scanning electron microscope to measure or characterize specific heat capacity, decomposition temperature and microscopic surface structure of the samples. Our research confirmed that the dropwise crystallization is the best way to obtain silica nanoparticles/ternary carbonate composite molten salt nanofluid under ultrasonic oscillation. From 450 ℃ to 470 ℃, the composite molten salt nanofluid prepared by dropwise crystallization method exhibits a specific heat capacity 40.59%—44.88% higher than that of the ternary carbonate, and a decomposition temperature of 806.90 ℃, demonstrating a satisfactory heat storage performance. Silica nanoparticles induces the molten salt to generate a rod-like nanostructure, which can obviously increase specific surface area, and in consequence, dramatically raise the specific heat capacity of the molten salt nanofluid.
Key words:  silica nanoparticles    carbonate molten salt    nanofluid    ultrasonic oscillation    direct crystallization    stirring crystallization    dropwise crystallization    specific heat capacity    high-temperature heat storage medium
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  TK513  
基金资助: 国家自然科学基金(21676197)
作者简介:  任曼飞:女,1992年生,硕士研究生,研究方向为聚光太阳能发电系统中传热蓄热介质熔盐热物性改良 E-mail:rmf2015@tju.edu.cn;黄国强:通信作者,男,1973年生,博士,副教授,研究方向为多晶硅精馏领域的开发与工程设计 E-mail:hgq@tju.edu.cn
引用本文:    
任曼飞, 黄国强. 用于高温蓄热介质的二氧化硅纳米颗粒/三元碳酸盐复合熔盐纳米流体的制备方法对比[J]. 材料导报, 2018, 32(23): 4067-4071.
REN Manfei, HUANG Guoqiang. Silica Nanoparticles/Ternary Carbonate Composite Molten Salt Nanofluid Serving as High-temperature Heat Storage Medium: a Comparative Study on the Preparation Methodology. Materials Reports, 2018, 32(23): 4067-4071.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.006  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4067
1 Kalogirou S A.Solar thermal collectors and applications[J].Progress in Energy & Combustion Science,2004,30(3):231.
2 Glaser P E.Power from the sun: Its future[J].Science,1968,162(3856):857.
3 丁静,魏小兰,彭强,等.中高温传热蓄热材料[M].北京:科学出版社,2013.
4 Goswami D Y.Solar thermal power technology: Present status and ideas for the future[J].Energy Sources,1998,20(2):137.
5 Kearney D, Herrmann U, Nava P, et al.Assessment of a molten salt heat transfer fluid in a parabolic trough solar field[J].Journal of Solar Energy Engineering,2003,125(2):293.
6 Araki N, Matsuura M, Makino A, et al.Measurement of thermophysical properties of molten salts: Mixtures of alkaline carbonate salts[J].International Journal of Thermophysics,1988,9(6):1071.
7 Vajjha R S, Das D K.Specific heat measurement of three nanofluids and development of new correlations[J].Journal of Heat Transfer,2009,131(7):81.
8 Eastman J A, Choi S U S, Li S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J].Applied Physics Letters,2001,78(6):718.
9 Lee S P, Choi S, Li S, et al.Measuring thermal conductivity of fluids containing oxide nanoparticles[J].Journal of Heat Transfer,1999,121(2):280.
10 Choi S U S, Zhang Z G, Yu W, et al. Anomalous thermal conductivi-ty enhancement in nanotube suspensions[J].Applied Physics Letters,2001,79(14):2252.
11 Jang S P, Choi S U S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids[J].Applied Physics Letters,2004,84(21):4316.
12 Keblinski P, Phillpot S R, Choi S U S, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)[J].International Journal of Heat & Mass Transfer,2002,45(4):855.
13 Shin D, Banerjee D.Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J].International Journal of Heat & Mass Transfer,2011,54(5-6):1064.
14 Betts M.The effects of nanoparticle augmentation of nitrate thermal storage materials for use in concentrating solar power applications[J].Territoire En Mouvement,2011(22):98.
15 Tiznobaik H, Shin D, et al.Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J].International Journal of Heat & Mass Transfer,2013,57(2):542.
16 Shin D, Banerjee D.Enhanced thermal properties of SiO2, nanocomposite for solar thermal energy storage applications[J].International Journal of Heat & Mass Transfer,2015,84:898.
17 Wu Yuting, Zhang Ludi, Ma Chongfang, et al.Effect of nanoparticles dispersion on enhancing the specific heat of the low melting point salt[J].Journal of Beijing Univesity of Technology,2016,42(8):1259(in Chinese).
吴玉庭,张璐迪,马重芳,等.纳米SiO2在低熔点熔盐中的分散对其比热容的影响[J].北京工业大学学报,2016,42(8):1259.
18 Ren N, Wu Y T, Wang T, et al.Experimental study on optimized composition of mixed carbonate for phase change thermal storage in solar thermal power plant[J].Journal of Thermal Analysis & Calorimetry,2011,104(3):1201.
19 Shin D, Tiznobaik H, Banerjee D.Specific heat mechanism of molten salt nanofluids[J].Applied Physics Letters,2014,104(12):99.
[1] 王若男, 刘斌, 陈爱强, 杨文哲, 马晓燕. 纳米流体液滴在铁板上蒸发的动力学研究[J]. 材料导报, 2019, 33(z1): 132-135.
[2] 刘立君, 张一帆, 马川, 刘晓燕. 非均匀SiO2-H2O纳米流体辐射特性研究[J]. 材料导报, 2019, 33(8): 1268-1271.
[3] 张正飞, 秦紫依, 李勇, 王毅. 相变材料的过冷现象及其抑制方法的研究进展[J]. 材料导报, 2019, 33(21): 3613-3619.
[4] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[5] 周璐, 马红和, 马素霞, 杜慧娟. 用于太阳能集热介质的纳米铜制备技术与铜纳米流体性能综述[J]. 材料导报, 2018, 32(15): 2576-2583.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed