Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4061-4066    https://doi.org/10.11896/j.issn.1005-023X.2018.23.005
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
添加Al对燃料电池阴极催化剂(Pt-Fe)/Pt合金微观组织及氧还原催化性能的影响
宋大凤, 雷宗坤, 曾小华
吉林大学汽车工程学院,长春 130000
Impact of Al Addition on Microstructure and Oxygen Reduction Catalytic Performance of (Pt-Fe)/Pt Alloy Used as Fuel Cell Cathode Catalyst
SONG Dafeng, LEI Zongkun, ZENG Xiaohua
College of Automotive Engineering, Jilin University, Changchun 130000
下载:  全 文 ( PDF ) ( 2259KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高燃料电池阴极催化剂(Pt-Fe)/Pt合金的氧还原催化活性和稳定性,在Pt-Fe合金体系中引入元素Al,熔炼得到中间合金(Pt-Fe)Al,再经过NaOH溶液定向腐蚀得到(Pt1-xFex)3Al/Pt合金,用其作为燃料电池氧还原反应的催化剂,并对其结构、催化活性和稳定性进行了研究。结果表明,所制备的催化剂材料(Pt1-xFex)3Al/Pt合金具有由几个原子层厚的纯Pt外壳和成分为(Pt1-xFex)3Al的内核构成的双模孔隙且内部互通的包覆式结构。相比于传统燃料电池的氧还原反应催化剂Pt/C材料以及由Pt-Fe体系制备的Pt46Fe54/Pt合金,(Pt1-xFex)3Al/Pt合金的比活性分别是Pt46Fe54/Pt合金、Pt/C比活性的 1.21倍和2.69倍,其质量活性分别是Pt46Fe54/Pt和Pt/C的1.17倍和5.3倍。在催化稳定性方面,(Pt1-xFex)3Al/Pt的电化学活性面积在10 000圈伏安循环后衰减到89%,然后趋于稳定,且循环40 000圈后其仍保留80%的电化学活性面积。由此可见,所制备的催化剂材料(Pt1-xFex)3Al/Pt合金具有较高的催化活性及催化稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋大凤
雷宗坤
曾小华
关键词:  燃料电池  铝元素  (铂-铁-铝)/铂合金  微观组织  氧还原催化性能    
Abstract: Aiming at improving the oxygen reduction catalytic activity and stability of the fuel cell cathode catalyst (Pt-Fe)/Pt alloy, Al element was introduced in the Pt-Fe alloy system, and the master alloy (Pt-Fe) Al was first obtained by smelting, then (Pt1-xFex)3Al/Pt alloy, the catalyst for oxygen reduction reaction of the fuel cell, was obtained by directional corrosion of NaOH solution. The structure, catalytic activity and stability of the prepared catalyst were studied in depth. The results indicated that the prepared (Pt1-xFex)3Al/Pt alloy bear an internally interconnected dual-mode pore structure composed of pure Pt shells with thickness of several atomic layers and a core of (Pt1-xFex)3Al. Compared with the traditional oxygen reduction catalysts Pt/C materials and the Pt46Fe54/Pt alloys, the prepared (Pt1-xFex)3Al/Pt alloy presented higher specific activity, which was 1.21 and 2.69 times of that of Pt46Fe54/Pt and Pt/C, and it also showed higher mass activity, which was 1.17 and 5.3 times of that of Pt46Fe54/Pt and Pt/C, respectively. In terms of catalytic stability, the electrochemical active area of (Pt1-xFex)3Al/Pt tended to be stabilized after decaying to 89% at 10 000 cycles of volt-amperes, and remained at 80% after 40 000 cycles. It can be concluded that the (Pt1-xFex)3Al/Pt alloy is endowed with favorable catalytic activity as well as satisfactory stability.
Key words:  fuel cell    element of Al    (Pt-Fe-Al)/Pt alloy    microstructure    oxygen reduction catalytic properties
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  TB34  
基金资助: 国家重点研发计划(2018YFB0105300; 2018YFB0105900); 国家自然科学基金(51675214; 51575221)
作者简介:  宋大凤: 女,1977年生,博士,副教授,硕士研究生导师,主要从事燃料电池高精度仿真与控制、燃料电池催化剂的制备与建模等研究 E-mail:songdf@126.com;曾小华:通信作者,男,1977年生,博士,教授,博士研究生导师,主要从事混合动力汽车及燃料电池混合动力系统建模与控制策略研究 E-mail:zengxiaohua@126.com
引用本文:    
宋大凤, 雷宗坤, 曾小华. 添加Al对燃料电池阴极催化剂(Pt-Fe)/Pt合金微观组织及氧还原催化性能的影响[J]. 材料导报, 2018, 32(23): 4061-4066.
SONG Dafeng, LEI Zongkun, ZENG Xiaohua. Impact of Al Addition on Microstructure and Oxygen Reduction Catalytic Performance of (Pt-Fe)/Pt Alloy Used as Fuel Cell Cathode Catalyst. Materials Reports, 2018, 32(23): 4061-4066.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.005  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4061
1 Qi H F, Luo W G, Yu J M.Study on hybrid energy storage system control strategy and its test[J].Science Technology & Engineering,2016,16(10):195(in Chinese).
齐宏芳,罗文广,于静美.电动汽车复合电源控制策略及其实验研究[J].科学技术与工程,2016,16(10):195.
2 Sun F Y.Patent analysis of fuel cell car technology[J].Journal of Chongqing University of Technology (Natural Science),2017, 31(1):21(in Chinese).
孙凤艳. 燃料电池汽车技术专利态势分析[J].重庆理工大学学报(自然科学),2017,31(1):21.
3 Wangner F T, Lakshmanan B, Mathias M F.Electrochemistry and the future of the automobile[J].Journal of Physical Chemistry Letters,2010,1(14):2204.
4 Yin H, Tang H, Wang D, et al.Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction[J].Acs Nano,2012,6(9):8288.
5 Gasteiger H A, Kocha S, Sompalli B, et al.Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J].Applied Catalysis B Environmental,2005,56(1):9.
6 Casalongue H S, Kaya S, Viswanathan V, et al.Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode[J].Nature Communications,2013,4(5):2817.
7 Shui J L, Chen C, Li J.Evolution of nanoporous Pt-Fe alloy nanowires by dealloying and their catalytic property for oxygen reduction reaction[J].Advanced Functional Materials,2011,21(17):3357.
8 Li Q, Wu L, Wu G, et al.New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid[J].Nano Letters,2015,15(4):2468.
9 Chen D, Zhao X, Chen S, et al.One-pot fabrication of FePt/reduced graphene oxide composites as highly active and stable electrocatalysts for the oxygen reduction reaction[J].Carbon,2014,68:755.
10 Prabhudev S, Bugnet M, Bock C, et al.Strained lattice with persistent atomic order in Pt3Fe2 intermetallic core-shell nanocatalysts[J].ACS Nano,2013,7(7):6103.
11 Mayrhofer K J, Juhart V, Hartl K, et al.Adsorbate-induced surface segregation for core-shell nanocatalysts[J].Angewandte Chemie International Edition,2009,48(19):3529.
12 Wang C, Chi M, Wang G, et al.Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1-x nanoparticles[J].Advanced Functional Materials,2011,21(1):147.
13 Sun X, Li D, Ding Y, et al.Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions[J].Journal of the American Chemical Society,2014,136(15):5745.
14 Han B, Carlton C E, Kongkanand A, et al.Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells[J].Energy & Environmental Science, Royal Society of Chemistry,2015,8(1):258.
15 Lei Z K, Zhao W X, Yu C L, et al.Effects of Ti-coated SiCP on structures and mechanical properties of SiCP/Al2014 composites[J].Acta Materiae Compositae Sinica,2016,33(10):2261(in Chinese).
雷宗坤,赵卫星,于成龙,等.SiCP表面镀Ti改性对SiCP/Al2014复合材料组织及力学性能的影响[J].复合材料学报,2016,33(10):2261.
16 Paulus U A, Wokeun A, Scherer G, et al.Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts[J].Journal of Physical Chemistry B,2002,106(41):4181.
17 Yang D L, Qiu F, Lei Z K, et al.The interfacial structure and mechanical properties of Ti5Si3-coated SiCP/Al2014 composites fabricated by powder metallurgy with hot pressing[J].Materials Science & Engineering A,2016,661:217.
[1] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[2] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[3] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[4] 王会权,陈惠,王后,巫静,刘洪波. 还原温度对石墨烯负载Pd颗粒的结构与电催化性能的影响[J]. 材料导报, 2019, 33(22): 3695-3700.
[5] 庄伟彬,田宗伟,刘广柱,孙跃军. 原位自生TiCp/6061复合材料的组织、硬度及耐磨性能[J]. 材料导报, 2019, 33(22): 3762-3767.
[6] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[7] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[8] 张永皞, 孟玉堂, 范啟超, 孙明艳, 黄姝珂. “近单相”型NiTiNb形状记忆合金研究进展[J]. 材料导报, 2019, 33(19): 3272-3276.
[9] 贾森森, 王永彪, 肖艳秋, 吴玉娟, 彭立明, 刘建秀, 刘新田. 镁合金微观组织的相场法模拟进展[J]. 材料导报, 2019, 33(19): 3306-3312.
[10] 方继恒, 刘曦, 谢明, 胡洁琼, 王松, 张吉明, 杨有才, 陈永泰, 王塞北, 李再久. 过热度、传热系数以及高斯分布参数对Ag-28Cu-2Ni合金凝固组织的影响[J]. 材料导报, 2019, 33(18): 3077-3084.
[11] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[12] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[13] 王剑豪, 薛松柏, 吕兆萍, 王刘珏, 刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[14] 闫静, 田晓, 赵宣, 赵丽娟, 杨艳春, 陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[15] 吴晓燕, 谭维, 罗才武, 张晓文, 李密, 房琦, 谭文发. 以MnFe2O4为阻挡层的Ni-YSZ阳极支撑SOFC的效能[J]. 材料导报, 2019, 33(12): 1949-1954.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed