Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3695-3700    https://doi.org/10.11896/cldb.18110180
  无机非金属及其复合材料 |
还原温度对石墨烯负载Pd颗粒的结构与电催化性能的影响
王会权1,陈惠1,2,,王后1,巫静1,刘洪波1,2
1 湖南大学材料科学与工程学院,长沙 410082
2 湖南省先进炭材料研究所,长沙 410082
Impact of Reduction Temperature on the Structure and Electrocatalytic Properties of Graphene Supported Pd Nanoparticles
WANG Huiquan1, CHEN Hui1,2, WANG Hou1, WU Jing1, LIU Hongbo1,2
1 College of Material Science and Engineering, Hunan University, Changsha 410082
2 Advanced Carbon Materials Research Institute in Hunan Province, Changsha 410082
下载:  全 文 ( PDF ) ( 3192KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 Pd催化剂对甲酸氧化反应具有出色的电催化性能,适宜的载体有助于改善Pd颗粒的稳定性和分散性,从而使其催化性能得以有效发挥。鉴于此,以硼氢化钠为还原剂,采用化学还原法在不同还原温度(0 ℃、25 ℃和50 ℃)下制备了石墨烯负载Pd颗粒催化剂(Pd/RGO)。采用XRD、Raman、XPS、TGA、TEM和BET等测试方法对该催化剂材料的微观形貌和结构进行了表征,利用循环伏安法和计时电流法测试了催化剂对甲酸氧化反应的电催化性能,着重分析了制备过程中还原温度对催化剂材料结构与电催化性能的影响。结果表明,当还原温度为0 ℃时,Pd/RGO的比表面积最大,达到261 m2·g-1,Pd颗粒粒径最小,约为4.16 nm;并且Pd/RGO具有最大的电化学活性面积(3.02 cm2),其氧化峰电流密度最高可达1 820 mA·mg-1 Pd。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王会权
陈惠
王后
巫静
刘洪波
关键词:  石墨烯    电催化  直接甲酸燃料电池  化学还原    
Abstract: Pd catalyst exhibits exceptional electrocatalytic performance in formic acid oxidation, and suitable supports contribute to the stability and dispersion of Pd particles, which enables Pd particles to give full play of the catalytic performance. Accordingly, we synthesized reduced graphene oxide supported Pd nanoparticles (Pd/RGO) as electrocatalysts for direct formic acid fuel cell by chemical reduction in three different reduction temperatures (0 ℃, 25 ℃ and 50 ℃) with sodium borohydride as reducer. XRD, Raman, XPS, TGA, TEM and BET were employed to characterize the surface morphology and structure of Pd/RGO samples. The electrocatalytic properties of the Pd/RGO electrocatalysts for formic acid oxidation were measured by cyclic voltammetry and chronoamperometry. Emphasis was put on analyzing the impact of reduction temperature on the structure and electrocatalytic performance of the Pd/RGO electrocatalysts. The results indicate that Pd/RGO catalysts prepared under the reduction temperature of 0 ℃ show the largest specific surface area (261 m2·g-1), with well dispersed Pd nanoparticles and the smallest Pd particle size of 4.16 nm on average; meanwhile this Pd/RGO presents the largest electrochemically active surface area (3.02 cm2) and the highest peak current density (1 820 mA·mg-1 Pd) towards formic acid electrooxidation.
Key words:  graphene    palladium    electrocatalysis    direct formic acid fuel cell    chemical reduction
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TB321  
基金资助: 国家重点研发计划(2017YFB0310905);国家自然科学基金(51172083);湖南省自然科学基金(2017JJ2027)
作者简介:  王会权,于2016年9月进入湖南大学攻读硕士学位,主要研究方向为石墨烯负载Pd催化剂材料的制备及甲酸电催化氧化性能研究。
陈惠,湖南大学材料科学与工程学院副教授、硕士生导师。2002年到湖南大学工作至今,并于2011年获得湖南大学博士学位,主要从事炭石墨材料的基础理论研究与应用技术开发。在国内外期刊上发表论文30余篇,获得中国发明专利2项。
引用本文:    
王会权, 陈惠, 王后, 巫静, 刘洪波. 还原温度对石墨烯负载Pd颗粒的结构与电催化性能的影响[J]. 材料导报, 2019, 33(22): 3695-3700.
WANG Huiquan, CHEN Hui, WANG Hou, WU Jing, LIU Hongbo. Impact of Reduction Temperature on the Structure and Electrocatalytic Properties of Graphene Supported Pd Nanoparticles. Materials Reports, 2019, 33(22): 3695-3700.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110180  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3695
[1] Lucia U. Renewable and Sustainable Energy Reviews, 2014, 30,164.
[2] Yu X, Pickup P G.Journal of Power Sources, 2008, 182(1),124.
[3] Xin Z, Zhu J, Tiwary C S, et al. ACS Applied Materials & Interfaces, 2016, 8(17), 10858.
[4] Chen A, Ostrom C. Chemical Reviews, 2015, 115(21), 11999.
[5] Liu M, Zhang R, Chen W. Chemical Reviews, 2014, 114(10), 5117.
[6] Zhang H, Jin M, Xiong Y, et al. Accounts of Chemical Research, 2013, 46(8), 1783.
[7] Zhang L, Chang Q, Chen H, et al. Nano Energy, 2016, 29, 198.
[8] Zhao J, Liu Z, Li H, et al. Langmuir, 2015, 31(8), 2576.
[9] Zhang Z, Ge J, Ma L, et al. Fuel Cells, 2010, 9(2), 114.
[10] Hu Z L, Aizawa M, Wang Z M, et al. Langmuir, 2010, 26(9), 6681.
[11] Yang J, Tian C, Wang L, et al. Journal of Materials Chemistry, 2011, 21(10), 3384.
[12] Chen Q S, Xu Z N, Peng S Y, et al. Journal of Power Sources, 2015, 282(35), 471.
[13] Chen X, Wu G, Chen J, et al. Journal of the American Chemical Society, 2011, 133(11), 3693.
[14] Jr W S H, Offeman R E.Journal of the American Chemical Society, 1958, 80(6), 1339.
[15] Li S S, Hu Y Y, Feng J J, et al. International Journal of Hydrogen Energy, 2014, 39(8), 3730.
[16] Xi P, Chen F, Xie G, et al. Nanoscale, 2012, 4(18), 5597.
[17] Xue W, Bo X, Zhou M, et al. Journal of Electroanalytical Chemistry, 2016, 781, 204.
[18] Krishna R, Fernandes D M, Marinoiu A, et al. International Journal of Hydrogen Energy, 2017, 42(37), 23639.
[19] Lv M, Li W, Liu H, et al. Chinese Journal of Catalysis, 2017, 38(5),939.
[20] Khannanov A A, Valimukhametova A R, Kiiamov A G, et al. Chemistryselect, 2017, 2(32), 10546.
[21] Liu Z T, Huang K L, Wu Y S, et al. Electrochimica Acta, 2015, 186,552.
[22] Li X T, Yan H S, Wang L, et al.Materials Review B:Research Papers, 2016, 30(8), 26 (in Chinese).李兴涛, 闫海生, 王磊, 等. 材料导报:研究篇, 2016, 30(8), 26.
[23] Yu B Y, Wen W J, Li W P, et al. Electrochimica Acta, 2016, 196, 223.
[24] Li S, Zhai Y, Zhang X, et al. Advanced Materials Interfaces, 2017, 4(14), 1700227.
[25] Wang J Y, Zhang H X, Jiang K, et al.Journal of the American Chemical Society, 2011, 133(38),14876.
[26] Xie Y, Wang J, Huang X, et al. Electrochemistry Communications, 2017, 74, 48.
[1] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[2] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[3] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[4] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[7] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[8] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[9] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[10] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[11] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[12] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[13] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[14] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[15] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed