Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2010-2016    https://doi.org/10.11896/cldb.18120110
  无机非金属及其复合材料 |
铁/氮共掺杂石墨烯的制备及氧还原催化活性
朱广彬1, 边志成1, 何雨林1, 李前进1, 郭路路1, 罗志虹1, 罗鲲2
1 桂林理工大学材料科学与工程学院,桂林 541004
2 常州大学材料科学与工程学院,常州 213164
Synthesis and Catalytic Performance Towards Oxygen Reduction of Fe/N Codoped Graphene
ZHU Guangbin1, BIAN Zhicheng1, HE Yulin1, LI Qianjin1, GUO Lulu1, LUO Zhihong1, LUO Kun2
1 College of Materials Science and Engineering,Guilin University of Technology,Guilin 541004,China
2 School of Materials Science and Engineering,Changzhou University,Changzhou 213164,China
下载:  全 文 ( PDF ) ( 5127KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为提高直接甲醇燃料电池(DMFC)的氧还原反应动力学,减少商用Pt/C催化剂的使用,本工作提出将铁/氮共掺杂石墨烯(Fe/NG)作为DMFC的氧还原催化剂,并研究了Fe/NG的制备方法和催化活性。首先,通过水热法处理吸附有铁离子的聚苯胺/氧化石墨烯,并分别在700 ℃、800 ℃和900 ℃对其进行热处理,得到Fe/NG-700、Fe/NG-800和Fe/NG-900三种催化剂。然后,采用X射线衍射(XRD)和X射线光电子能谱(XPS)对三种Fe/NG催化剂进行表征,确定了铁元素以铁单质和四氧化三铁两种形式存在,氮元素以吡啶氮和石墨氮为主。最后,在氧饱和的0.1 mol/L KOH碱性体系中,采用循环伏安法(CV)、旋转圆盘电极(RDE)、旋转环盘电极(RRDE)研究了三种Fe/NG催化剂的ORR催化机理,证明Fe/NG-700、Fe/NG-800、Fe/NG-900催化四电子过程中,双氧水产率保持接近0。Fe/NG-700、Fe/NG-800、Fe/NG-900具有与20% Pt/C相当的催化活性和循环稳定性,更优异的抗甲醇毒化能力,是一种潜在的直接甲醇燃料电池催化剂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱广彬
边志成
何雨林
李前进
郭路路
罗志虹
罗鲲
关键词:  氧还原反应  铁/氮共掺杂石墨烯  四电子过程  稳定性  耐甲醇毒化    
Abstract: Aiming at making the oxygen reduction reaction of direct methanol fuel cell (DMFC) dynamically easier and reducing the utilization of commercial Pt/C catalysts, we introduced the Fe/N-codoped graphene (Fe/NG) to the DMFC as catalyst for oxygen reduction reaction (ORR), and investigated the synthesis approach and ORR catalytic performance of Fe/NG. Firstly, Fe ions absorbed polyaniline/graphene oxide was hydrothermally treated, subsequent heat treatments at 700 ℃, 800 ℃ and 900 ℃ in nitrogen atmosphere were carried out, and a series of Fe/N-codoped graphene composites (Fe/NG-700, Fe/NG-800 and Fe/NG-900) were obtained. Then, analysis of the Fe/NG products by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) proved that Fe element existed in the form of iron metal and ferric tetroxide, and nitrogen species primarily consisted of pyridine nitrogen and graphite nitrogen. Finally, the ORR catalytic activity and mechanism of the Fe/NG pro-ducts were measured by means of cyclic voltammetry (CV), rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) in oxygen-saturated 0.1 mol/L KOH alkaline solution. It is demonstrated that the ORR catalyzed by Fe/NG-700, Fe/NG-800 and Fe/NG-900 showed four electron process with a hydrogen peroxide yield close to 0. Compared with 20% Pt/C, Fe/NG-700, Fe/NG-800 and Fe/NG-900 exhibited comparable activity and stability, superior methanol tolerance, which made Fe/NG a promising catalyst for direct methanol fuel cell.
Key words:  oxygen reduction reaction    Fe/N-codoped graphene    four electron process    stability    methanol tolerance
出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51874051);广西自然科学基金(2015GXNSFBA139220;2016GXNSFAA380107;2018GXNSFAA281184)
通讯作者:  luozhihong615@glut.edu.cn   
作者简介:  罗志虹,桂林理工大学材料科学与工程学院,讲师,硕士研究生导师。于2014年获得华中科技大学博士学位。从事新能源材料、超级电容器、燃料电池、锂空气电池方面的研究,取得了多项创新性成果,发表期刊论文和发明专利共20多篇;朱广彬,2016年毕业于平顶山学院,获得化学工程与工艺专业工学学士学位。现为桂林理工大学硕士研究生,在罗鲲教授和罗志虹博士的指导下进行研究。目前主要研究领域为新能源材料;罗鲲,常州大学,教授,博士研究生导师,曾于2008年—2018年在桂林理工大学任教。分别于2000年和2004年获得中国科学院材料科学与工程专业硕士学位和博士学位。从事新能源储能材料研究,已在Adv. Mater., Chem. Commun., Chem.Mater., J. Mater. Chem. A等期刊发表研究论文100余篇。
引用本文:    
朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
ZHU Guangbin, BIAN Zhicheng, HE Yulin, LI Qianjin, GUO Lulu, LUO Zhihong, LUO Kun. Synthesis and Catalytic Performance Towards Oxygen Reduction of Fe/N Codoped Graphene. Materials Reports, 2020, 34(2): 2010-2016.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120110  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2010
1 Nie Y, Li L, Wei Z D. Chemical Society Reviews, 2015, 44(8), 2168.2 Raj C R, Samanta A, Noh S H, et al. Journal of Materials Chemistry A, 2016, 4(29), 11156.3 Chung D Y, Yoo J M, Sung Y E. Advanced Materials, 2018, 30(42), 1704123.4 Xu S J, Yong L, Wu P Y. ACS Applied Materials & Interfaces, 2013, 5(3), 654.5 Xiang L, Luo Z H, Hu C L, et al. Chemelectrochem, 2018, 5(7), 1073.6 Zeng X Y, You C H, Leng L M, et al. Journal of Materials Chemistry A, 2015, 3(21), 11224.7 Kukunuri S, Naika K, Sampath S. Journal of Materials Chemistry A, 2017, 5(9), 4660.8 Bu L Z, Zhang N, Guo S J, et al. Science, 2016, 354(6318), 1410.9 Shen L L, Zhang G R, Miao S, et al. ACS Catalysis, 2016, 6(3), 1680.10 Osgood H, Devaguptapu S V, Xu H, et al. Nano Today, 2016, 11(5), 601.11 Sun M, Liu H J, Liu Y, et al. Nanoscale, 2015, 7(4), 1250.12 Sun M, Dong Y Z, Zhang G, et al. Journal of Materials Chemistry A, 2014, 2(33), 13635.13 Chen Z K, Lin F, He D D, et al. New Journal of Chemistry, 2017, 41(12), 4959.14 Luo Z H, Zhu Q F, Huang Y F, et al. Materials Review A: Review Papers, 2016, 30(5), 138(in Chinese).罗志虹, 朱其峰, 黄业富, 等. 材料导报: 综述篇, 2016, 30(5), 138.15 Li Y, Zhou Y Z, Zhu C Z, et al. Catalysis Science & Technology, 2018, 8(20), 5325.16 Liu T Y. Preparation and photocatalytic properties of cluster spherical Fe3O4 nanocrystals. Master’s Thesis,China University of Mining and Technology, China, 2014(in Chinese).刘婷瑜. 簇状球Fe3O4纳米晶的制备及其光催化性能研究. 硕士学位论文, 中国矿业大学, 2014.17 Li Q, Xu P, Gao W, et al. Advanced Materials, 2014, 26, 1378.18 Ratso S, Kruusenberg I, Vikkisk M, et al. Carbon, 2014, 73, 361.19 Zhao C J, Shao X X, Zhang Y X, et al. ACS Applied Materials Interfaces, 2016, 8, 30133.20 Wang H T, Wang W, Xu Y Y, et al. ACS Applied Materials Interfaces, 2017, 9, 10610.21 Hao Y F, Yang Y Y, Hong L J, et al. ACS Applied Materials Interfaces, 2014, 6, 21983.22 Xu G R, Wang B, Zhu J Y, et al. ACS Catalysis, 2016, 6, 5260.
[1] 王蜀湘, 卢星宇, 邹力, 任洁, 王留留, 谢佳乐. Si光阳极稳定性提高策略研究进展[J]. 材料导报, 2024, 38(2): 21100131-9.
[2] 杨强, 刘洪新, 何端鹏, 陈海峰, 陈维强, 金晶, 潘福明. 高导热沥青基碳纤维复合材料在航天器中的应用现状及展望[J]. 材料导报, 2024, 38(1): 22080244-8.
[3] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[4] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[5] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[6] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[7] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[8] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[9] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[10] 杨春利, 黄江龙, 杜晶, 陈喜, 张浩, 王靖. In、Ta共掺杂Ni-BaCeO3基氢分离膜[J]. 材料导报, 2023, 37(6): 21090258-8.
[11] 吕春艳, 刘杨, 张文君, 王晴. 基于硅气凝胶包载尼莫地平新型载药系统的构建及胃肠稳定性研究[J]. 材料导报, 2023, 37(6): 21030015-6.
[12] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[13] 徐文杰, 刘丹, 屈德宇, 李曦. 两电子氧还原电催化合成过氧化氢的研究进展[J]. 材料导报, 2023, 37(24): 22030010-12.
[14] 蒋佳骏, 吴张永, 朱启晨. 水基Ni0.5Zn0.5Fe2O4-SiC二元混合磁流体的稳定性、流变性、热物性与低速润滑性[J]. 材料导报, 2023, 37(20): 22040257-8.
[15] 赵悦, 李德念, 阳济章, 熊传溪, 袁浩然, 陈勇. 中药渣生物炭活化制备碳基电催化剂及其氧还原反应催化性能研究[J]. 材料导报, 2023, 37(2): 21070205-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed