Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21070205-7    https://doi.org/10.11896/cldb.21070205
  无机非金属及其复合材料 |
中药渣生物炭活化制备碳基电催化剂及其氧还原反应催化性能研究
赵悦1,2,3,4,†, 李德念2,3,4,5,†, 阳济章2,3,4,5, 熊传溪1, 袁浩然2,3,4,5,*, 陈勇2,3,4,5
1 武汉理工大学材料科学与工程学院,武汉 430070
2 中国科学院广州能源研究所,广州510640
3 南方海洋科学与工程广东省实验室(广州),广州 511458
4 广东省新能源和可再生能源研究开发与应用重点实验室, 广州 510640
5 中国科学院可再生能源重点实验室, 广州 510640
Study on the Preparation and Performance of Metal-free Electrocatalyst from Biochar of Chinese Medicine Slag Toward Oxygen Reduction Reaction
ZHAO Yue1,2,3,4,†, LI Denian2,3,4,5,†, YANG Jizhang2,3,4,5, XIONG Chuanxi1, YUAN Haoran2,3,4,5,*, CHEN Yong2,3,4,5
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
2 Guangzhou Institute of Energy Research, Chinese Academy of Sciences, Guangzhou 510640, China
3 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),Guangzhou 511458, China
4 Guangdong Provincial Key Laboratory of New Energy and Renewable Energy Research, Development and Application, Guangzhou 510640, China
5 Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 5194KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以废弃物生物质中药渣为原料,以ZnCl2为活化剂,通过热解活化两步法制备了生物质碳基氧还原电催化剂。采用SEM、氮气等温吸脱附测试、XRD、XPS、元素分析和电化学工作站等材料测试方法,分析了所制备碳基电催化剂的结构特征以及氧还原反应性能。结果表明,当活化剂与生物炭质量比为4 ∶1,活化温度为800 ℃时,所制备的ZC-4 ∶1-800阴极氧还原电催化剂性能最佳。ZC-4 ∶1-800具有介孔和微孔结构,比表面积可达970.4 m2/g,其起始电位为0.9 V(vs.RHE),半波电位为0.8 V,极限电流密度为4.9 mA/cm2,与商业20%Pt/C性能相近。此外,ZC-4 ∶1-800具有比商业20%Pt/C更好的稳定性和甲醇耐受性,在实际应用中有望作为商业贵金属电催化剂的替代品,同时也为废弃生物质的资源化利用提供了新路径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵悦
李德念
阳济章
熊传溪
袁浩然
陈勇
关键词:  中药渣  生物炭  氧还原反应  燃料电池    
Abstract: Using ZnCl2 as an activator, Chinese medicine slag was converted into metal-free carbon electrocatalyst for oxygen reduction reaction through coupled pyrolysis and activation. The structural features of the carbon-based electrocatalysts and the oxygen reduction reaction performance were analyzed with SEM, nitrogen isotherm adsorption-desorption test, XRD, XPS, elemental analysis and electrochemical workstations. Especially, the product obtained with activation agent/biochar mass ratio of 4 ∶1 under 800 ℃ thermal activation, namely ZC-4 ∶1-800, which has a mesoporous and microporous structure with a specific surface area of up to 970.4 m2/g, delivered the optimal oxygen reduction electrocatalyst performance, with a starting potential of 0.9 V, a half-wave potential of 0.8 V, and a limit current density of 4.9 mA/cm2, which close to that of the commercial 20wt% Pt/C. Besides, it also revealed obviously superior stability and methanol tolerance over 20%Pt/C counterpart, and thus promise great potential as sustainable alternative candidate for practical use. Meanwhile, this work also provides a new path for the resource utilization of waste biomass.
Key words:  Chinese medicine slag    biochar    oxygen reduction reaction    fuel cell
发布日期:  2023-02-08
ZTFLH:  TM911.4  
  O643.36  
基金资助: 国家重点研发计划资助(2019YFC1906600);国家自然科学基金(51806226);广东省自然科学基金(2019A1515011570);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0101);中国科学院青年创新促进会资助
通讯作者:  *袁浩然,2003年毕业于合肥工业大学热能工程专业,获学士学位;2010年毕业于中国科学院广州能源研究所,获博士学位,同年入职中国科学院广州能源研究所。致力于有机固废能源化与资源化高效清洁利用的基础理论研究及技术开发,发表SCI/EI论文100余篇;参与《农村能源供给绿色化及用能清洁化与便利化》等编著7部;授权国内发明专利43件、国际发明专利4件。   
作者简介:  †共同第一作者
赵悦,硕士研究生,于2019年9月就读于武汉理工大学。2019年6月毕业于武汉理工大学,并于同年考入武汉理工大学,攻读硕士研究生学位。于2020年10月在中科院广州能源研究所联合培养学习,主要从事固体废弃物高值化利用研究。
李德念,2009年毕业于武汉理工大学,获得学士学位,2014年毕业于武汉理工大学,获得博士学位。中国科学院广州能源研究所副研究员。主要从事固体废弃物资源化利用、碳基功能材料的制备及应用,发表SCI收录论文28篇。
引用本文:    
赵悦, 李德念, 阳济章, 熊传溪, 袁浩然, 陈勇. 中药渣生物炭活化制备碳基电催化剂及其氧还原反应催化性能研究[J]. 材料导报, 2023, 37(2): 21070205-7.
ZHAO Yue, LI Denian, YANG Jizhang, XIONG Chuanxi, YUAN Haoran, CHEN Yong. Study on the Preparation and Performance of Metal-free Electrocatalyst from Biochar of Chinese Medicine Slag Toward Oxygen Reduction Reaction. Materials Reports, 2023, 37(2): 21070205-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070205  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21070205
1 Li S W, Liu J J, Yin Z, et al. ACS Catal, 2020, 10(1), 907.
2 Nie Y, Wei Z. Chemcatchem, 2019, 11(24), 5885.
3 Zaman S, Huang L, Douka A I, et al. Angewandte Chemie-International Edition 2021, 60(33), 17832.
4 Lin R, Cai X, Zeng H, et al. Advanced Materials, 2018, 30(17), 1705332.
5 Li Y, Wang H H, Priest C, et al. Advanced Materials, 2021, 33(6), 2000381.
6 He Y H, Liu S W, Priest C, et al. Chemical Society Reviews, 2020, 49(11), 3484.
7 Thompson S T, Papageorgopoulos D. Nature Catalysis, 2019, 2(7), 558.
8 Li X K, Zhang C M, Du C, et al. Science China-Chemistry, 2019, 62(3), 378.
9 Gong K P, Du F, Xia Z H, et al. Science, 2009, 323(5915), 760.
10 Long Y, Ye F, Shi L, et al. Carbon, 2021, 179, 365.
11 Gao S Y, Wei X J, Fan H, et al. Nano Energy, 2015, 13, 518.
12 Yuan W J, Feng Y, Xie A J, et al. Nanoscale, 2016, 8(16), 8704.
13 Zhou L H, Fu P, Cai X X, et al. Applied Catalysis B: Environmental, 2016, 188, 31.
14 Guo Z Y, Xiao Z, Ren G Y, et al. Nano Research, 2016, 9(5), 1244.
15 Borghei M, Laocharoen N, Kibena-Poldsepp E, et al. Applied Catalysis B: Environmental, 2017, 204, 394.
16 Xuan C, Wu Z, Lei W, et al. Chemcatchem, 2017, 9(5), 809.
17 Zhang L Y, Zhou Z Q, Liu Z, et al. Chemelectrochem, 2016, 3(9), 1466.
18 Zhao L. RSC Advances, 2017, 7(23), 13904.
19 Gao S Y, Li X G, Li L Y, et al. Nano Energy, 2017, 33, 334.
20 Zan Y X, Zhang Z P, Liu H J, et al. Journal of Materials Chemistry A, 2017, 5(46), 24329.
21 Yang S T, Mao X X, Cao Z X, et al. Applied Surface Science, 2018, 427, 626.
22 Sathiskumar C, Ramakrishnan S, Vinothkannan M, et al. Nanomaterials-Basel, 2020, 10(1), 76.
23 Ye Y Y, Qian T T, Jiang H. Industrial & Engineering Chemistry Research, 2020, 59(35), 15614.
24 Wang H F, Zhang W D, Bai P Y, et al. Ultrason Sonochem, 2020, 65, 105048.
25 Gao J, Chu X J, Lu H B, et al. Materials Today Communications, 2021, 26, 102051.
26 Guo F Q, Dong Y P, Zhang T H, et al. Industrial & Engineering Che-mistry Research, 2014, 53(34), 13264.
27 Dong L, Chang J, Zhang Z, et al. Environmental Science and Technology, 2020, 43(8), 137.
28 Suthar S, Singh D. Environmental Science and Pollution Research, 2012, 19(7), 3054.
29 Wang H G, Lou X X, Hu Q, et al. Journal of Molecular Liquids, 2021, 325, 114967.
30 Shen Q B, Wang Z Y, Yu Q, et al. Environmental Research, 2020, 183, 109195.
31 Lian F, Sun B B, Song Z G, et al. Chemical Engineering Journal, 2014, 248, 128.
32 Wang S Y, Yu D S, Dai L M, et al. ACS Nano, 2011, 5(8), 6202.
33 Ma R G, Lin G X, Zhou Y, et al. Npj Computational Materials, 2019, 5(1), 4245.
34 Wu S L, Chen G X, Kim N Y, et al. Small, 2016, 12(17), 2376.
35 Li D N, Deng L F, Yuan H R, et al. Electrochimica Acta, 2018, 262, 297.
36 Thommes M, Cychosz K A. Adsorption, 2014, 20(2-3), 233.
37 Wen Y L, Chi L, Wen X, et al. Advanced Electronic Materials, 2020, 6(10), 2000450.
38 Zhang J T, Zhang T, Ma J, et al. Carbon, 2021, 172, 556.
39 Lai L F, Potts J R, Zhan D, et al. Energy & Environmental Science, 2012, 5(7), 7936.
40 Zhang J, Song L H, Zhao C F, et al. New Carbon Materials, 2021, 36(1), 209.
41 Wang J, Kong H, Zhang J Y, et al. Progress in Materials Science, 2021, 116, 100717.
42 Hu C G, Xiao Y, Zhao Y, et al. Nanoscale, 2013, 5(7), 2726.
43 Liu J, Jiao M G, Lu L L, et al. Nature Communication, 2017, 8(1), 15938.
44 Parsons R, Vandernoot T. Journal of Electroanalytical Chemistry, 1988, 257(1-2), 9.
[1] 黄雪刚, 刘洋, 李博文, 谭聪, 谭春玲, 宋兰, 仇浩. 三种热点工程颗粒材料的性质与环境行为和细胞毒性的关系[J]. 材料导报, 2023, 37(6): 21050141-8.
[2] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[3] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[4] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[5] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[6] 李博文, 刘洋, 李宗霖, 齐佳敏, 谭聪, 何莹, 仇浩. 生物炭对土壤酶活性影响的机理研究进展[J]. 材料导报, 2022, 36(7): 20060202-6.
[7] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[8] 冯磊, 舒文祥, 文陈, 崔庆新, 白晶莹, 李心歆. 火星原位资源可用途径分析[J]. 材料导报, 2022, 36(22): 22040408-7.
[9] 刘峥嵘, 杨甲铭, 付磊, 周礼凯, 吴可, 李晴皓, 王璇, 周峻, 吴锴. SrTiO3基可逆固体氧化物电池电极材料的研究进展[J]. 材料导报, 2022, 36(21): 21040196-8.
[10] 刘金伟, 畅丽媛, 王如志. 磷掺杂对碳载铂催化剂氧还原催化性能的影响[J]. 材料导报, 2022, 36(21): 21040096-6.
[11] 洪亢, 朱凯, 刘声楚, 李赏, 潘牧. 电化学腐蚀对气体扩散层氧传质的影响[J]. 材料导报, 2022, 36(20): 21030161-5.
[12] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[13] 任雨峰, 栾伟玲, 姜滔. 基于金属有机框架材料的氧还原催化剂研究进展[J]. 材料导报, 2022, 36(19): 20080238-9.
[14] 于鸿莉, 杨宏昊, 马张博, 张原硕, 杨雯, 李永堂. 铁素体合金表面复合尖晶石涂层的研究进展[J]. 材料导报, 2022, 36(17): 20090087-8.
[15] 张立昌, 蔡超, 谭金婷, 周江峰, 王园, 潘牧. 质子交换膜燃料电池微孔层在反极过程中的耐久性研究[J]. 材料导报, 2022, 36(14): 21030086-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed