Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21080161-7    https://doi.org/10.11896/cldb.21080161
  无机非金属及其复合材料 |
三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响
吴海华*, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言
三峡大学机械与动力学院,石墨增材制造技术与装备湖北省工程研究中心,湖北 宜昌 443002
Forming of Three-layer Graphene Absorber by Fused Deposition Modeling and Effect of Interlayer Material Distribution on Microwave Absorption Properties
WU Haihua*, YANG Zenghui, LIU Li, ZHANG Renjing, DENG Kaixin, LI Yan
Graphite Additive Manufacturing Technology and Equipment Hubei Engineering Research Center,College of Mechanical and Power Engineering of China Three Gorges University, Yichang 443002, Hubei, China
下载:  全 文 ( PDF ) ( 4494KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用熔融沉积成形技术快速制备了石墨烯/聚乳酸和石墨烯/四氧化三铁/聚乳酸两类复合吸波材料和三层石墨烯吸波体,测试了复合材料的电磁参数,计算了反射率;利用CST仿真与实验研究了吸波剂层间分布及孔洞结构对三层石墨烯吸波体吸波性能的影响。结果表明:对复合材料而言,双组元吸波剂的吸波性能更佳,但难以与石墨烯单组元吸波剂形成良好的阻抗匹配;对三层石墨烯吸波体而言,石墨烯呈均匀梯度分布(石墨烯加入量分别为5%、7%、9%(均为质量分数,下同)),可获得最佳的吸波效果;周期性孔洞结构的存在,一方面增加了反射界面数量,产生更多的边缘散射效应与多重共振耦合,另一方面通过改善阻抗匹配使石墨烯呈非均匀梯度分布(石墨烯加入量分别为7%、7%、9%)时实现Ku波段(12~18 GHz)全覆盖有效吸收(反射率小于-10 dB),为微波频段高效吸收提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴海华
杨增辉
刘力
张忍静
邓开鑫
李言
关键词:  三层石墨烯吸波体  吸波剂层间分布  周期性孔洞结构  熔融沉积成形  吸波性能    
Abstract: Graphene/polylactic acid and graphene/Fe3O4/polylactic acid composites and three-layer graphene absorbers were rapidly prepared by fused deposition modeling technology. The electromagnetic parameters of the composites were measured and the reflectivity was calculated. The effects of interlayer distribution and pore structure of absorber on the microwave absorbing properties of three-layer graphene absorber were studied by CST simulation and experiment. It is found that for the composites, the two-component absorber has better microwave absorption performance, but it is difficult to form a good impedance match with the graphene one-component absorber. For the three-layer graphene absorber, graphene presents a uniform gradient distribution (The addition amount of graphene is 5%, 7% and 9% respectively), which can obtain the best absorbing effect. The existence of periodic hole structure, on the one hand, increases the number of reflection interfaces, resulting in more edge scattering effects and multiple resonance coupling. On the other hand, by improving impedance matching, it can realize full coverage effective absorption (reflectivity less than-10dB) in Ku band (12—18GHz) when graphene is distributed in a non-uniform gradient (The addition of graphene is 7%, 7% and 9% respectively). It provided a reference for efficient absorption in microwave band.
Key words:  three-layer graphene absorber    interlayer distribution of absorbing agent    periodic hole structure    fused deposition modeling    microwave absorbing property
发布日期:  2023-02-08
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51575313)
通讯作者:  *吴海华,三峡大学机械与动力学院教授,博士研究生导师。1993年武汉理工大学船舶机械制造及其自动化专业本科毕业,2003年华中科技大学材料加工工程专业硕士毕业,2009年西安交通大学机械工程专业博士毕业,现任三峡大学机械与动力学院副院长。目前主要从事石墨/石墨烯3D打印等研究工作。近年来,在《机械工程学报》、Rapid Prototyping JournalJournal of Advanced Manufacturing Technology等知名期刊发表学术论文70多篇,获得国家授权发明专利25项,科研成果转化两项。   
引用本文:    
吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
WU Haihua, YANG Zenghui, LIU Li, ZHANG Renjing, DENG Kaixin, LI Yan. Forming of Three-layer Graphene Absorber by Fused Deposition Modeling and Effect of Interlayer Material Distribution on Microwave Absorption Properties. Materials Reports, 2023, 37(2): 21080161-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080161  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21080161
1 Qiu Q, Zhang Y Q, Zhang X. Electronic Components and Materials, 2009, 28(8), 78(in Chinese).
邱琴, 张晏清, 张雄. 电子元件与材料, 2009, 28(8), 78.
2 Chu Z Y. In:the 29th Annual Academic Conference of Chinese Chemical Society. Beijing, China, 2014, pp. 34(in Chinese).
楚增勇. 中国化学会第29届学术年会. 北京, 2014, pp. 34.
3 Han M K. Investigation on microstructure design and electromagnetic properties of two-dimensional microwave absorption materials. Ph. D. Thesis, Northwest Polytechnical University, China, 2018(in Chinese).
韩美康. 二维吸波材料的微结构设计及电磁特性研究. 博士学位论文, 西北工业大学, 2018.
4 Jia L, Xu L, Ren F, et al. Carbon, 2019, 144, 101.
5 Wang Y, Gao X, Wu X, et al. Chemical Engineering Journal, 2019, 375, 121942.
6 Li Y, Liu X, Liu R, et al. Carbon, 2018, 139, 181.
7 Kang S, Qiao S Y, Hu Z M, et al. Materials China, 2020, 39(1), 64(in Chinese).
康帅, 乔士亚, 胡祖明, 等. 中国材料进展, 2020, 39(1), 64.
8 Cheng J B, Zhao H B, Li M E, et al. Materials China, 2019, 38(9), 897(in Chinese).
程金波, 赵海波, 李蒙恩, 等. 中国材料进展, 2019, 38(9), 897.
9 Wang Y, Wu X, Zhang W, et al. Journal of Magnetism and Magnetic Materials, 2017, 443, 358.
10 Shen L, Pang Y, Yan L, et al. Results in Physics, 2018, 11, 253.
11 Li J. Study on absorbing properties of foam core sandwich composites. Master's Thesis, Wuhan University of Technology, China, 2010(in Chinese).
李娟. 泡沫夹芯结构复合材料的吸波性能研究. 硕士学位论文, 武汉理工大学, 2010.
12 Wu H H, Liu L, Cai Y, et al. Transactions of Materials and Heat Treatment, 2020, 41(5), 34(in Chinese).
吴海华, 刘力, 蔡宇, 等. 材料热处理学报, 2020, 41(5), 34.
13 Bregman A, Michielssen E, Taub A. Polymers, 2019, 11(8), 1233.
14 Wu H H, Hu Z L, Li Y T, et al. Acta Materiae Compositae Sinica, DOI:10. 13801/j. cnki. fhclxb. 20210311. 003. (in Chinese).
吴海华, 胡正浪, 李雨恬, 等. 复合材料学报, DOI:10. 13801/j. cnki. fhclxb. 20210311. 003.
15 Huang B, Yue J, Wei Y, et al. Applied Surface Science, 2019, 483, 98.
16 Chen X, Shi T, Wu G, et al. Journal of Colloid and Interface Science, 2020, 572, 227.
17 Jia K, Wang D H, Li K X, et al. Materials Reports A:Review Papers, 2019, 33(3), 805(in Chinese).
贾琨, 王东红, 李克训, 等. 材料导报:综述篇, 2019, 33(3), 805.
18 Kang G J, Fang D B, Tong W Q. In:The 14th Annual Academic Confe-rence of Chinese Geophysical Society in 1998. Hangzhou, China, 1998, pp. 1(in Chinese).
康国军, 房德斌, 佟文琪. 1998年中国地球物理学会第十四届学术年会. 杭州, 1998, pp. 1.
19 Lin S, Xun Q N, Zhang Y, et al. Chemical Analysis and Meterage, 2014, 23(5), 83(in Chinese).
林帅, 荀其宁, 张雨, 等. 化学分析计量, 2014, 23(5), 83.
20 Chen S, Tan G, Gu X, et al. Journal of Alloys and Compounds, 2017, 705, 309.
21 Qiao M, Lei X, Ma Y. Chemical Engineering Journal, 2016, 304, 552.
22 Cao M, Deng Y X, Xu K, et al. Acta Materiae Compositae Sinica, 2020, 37(12), 3004(in Chinese).
曹敏, 邓雨希, 徐康, 等. 复合材料学报, 2020, 37(12), 3004.
23 Zhang X, Liu S H, Duan Y P, et al. Journal of Aeronautical Materials, 2007(2), 58(in Chinese).
张昕, 刘顺华, 段玉平, 等. 航空材料学报, 2007(2), 58.
24 Wang Y J, Huang W, Huang Y W, et al. Materials Reports B:Research Papers, 2019, 33(5), 1624(in Chinese).
王玉江, 黄威, 黄玉炜, 等. 材料导报:研究篇, 2019, 33(5), 1624.
25 Feng B. Study on absorbing properties of composite laminate structure. Master's Thesis, Wuhan University of Technology, China, 2010(in Chinese).
冯彬. 层板结构吸波复合材料吸波性能研究. 硕士学位论文, 武汉理工大学, 2010.
26 Tian K. Research on cement-based multi-functional composite with electromagnetic protection and microwave absorbing. Ph. D. Thesis, Wuhan University of Technology, China, 2010(in Chinese).
田焜. 水泥基电磁防护吸波多功能复合材料的研究. 博士学位论文, 武汉理工大学, 2010.
27 Bu W B, Xu J, Qiu T, et al. Materials Reports, 2001, 15(5), 14(in Chinese).
步文博, 徐洁, 丘泰, 等. 材料导报, 2001, 15(5), 14.
28 Kim S S, Jo S B, Gueon K I, et al. IEEE Transactions on Magnetics, 1991, 27, 5462.
29 Li F, Zhuang L, Zhan W, et al. Ceramics International, 2020, 46(13), 21744.
30 Zhou Q, Yin X, Ye F, et al. Materials and Design, 2017, 123, 46.
31 Wang J. Absorption properties of graphene-dielectric composite materials. Master's Thesis, University of Electronic Science and Technology of China, China, 2019(in Chinese).
王娟. 石墨烯-介质复合材料的吸收特性研究. 硕士学位论文, 电子科技大学, 2019.
[1] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[2] 陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
[3] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[4] 张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
[5] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[6] 杨杰, 黎静, 吴文杰, 于宁. 空间大型桁架在轨增材制造技术的研究现状与展望[J]. 材料导报, 2021, 35(3): 3159-3167.
[7] 朱若星, 赵廷凯, 折胜飞, 李铁虎. 螺旋型非晶态碳纳米管/双马来酰亚胺树脂(HACNT/BMI)复合材料的制备及吸波机理[J]. 材料导报, 2021, 35(10): 10216-10220.
[8] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
[9] 金丹, 王欢, 杜雨果. 磁控原位聚合铁硅铬/聚苯胺复合材料吸波性能研究[J]. 材料导报, 2020, 34(24): 24150-24154.
[10] 赵鹏飞, 耿浩然, 范浩军, 许伟建, 廖禄生, 彭政. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
[11] 周影影, 周万城, 叶梦元, 谢辉. 制备时间对CIPs/Fe3O4吸波性能的影响[J]. 材料导报, 2020, 34(10): 10008-10012.
[12] 张春旋, 李艳辉, 李亚楠, 张伟. 铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能[J]. 材料导报, 2020, 34(10): 10076-10081.
[13] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[14] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[15] 周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 749-754.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed