Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9055-9063    https://doi.org/10.11896/cldb.18110163
  无机非金属及其复合材料 |
电磁屏蔽机理及轻质宽频吸波材料的研究进展
孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰
中国航天宇航元器件工程中心,北京 100094
Research Progress of Electromagnetic Shielding Mechanism and Lightweight and Broadband Wave-absorbing Materials
KONG Jing, GAO Hong, LI Yan, WANG Xiangke, ZHANG Jingjing, HE Duanpeng, WU Bing, XING Yan
China Aerospace Components Engineering Center, Beijing 100094, China
下载:  全 文 ( PDF ) ( 10786KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着智能通信系统、无线网络设备、电子探测设备等技术的发展,空间电磁波辐射对仪器设备的影响不断增大,电磁波屏蔽技术在电磁兼容(EMC)、抗电磁干扰(EMI)设计、飞行器隐身等方面有了越来越广泛的应用。目前,以铁氧体、碳化硅、石墨为代表的传统吸波材料普遍存在着吸收频带窄、吸收性能弱等缺点,一般通过掺杂改性的方法来提高其吸波性能,但得到的吸波层厚度较大,吸波效果不够理想,同时增加了设备质量,也无法达到飞行器减重的目的。近年来,以纳米吸波材料、复合型导电聚合物、石墨烯吸波材料以及超材料为代表的新型轻质宽频吸波材料得到了越来越多的关注。
电磁波屏蔽机理主要基于电磁波的反射与吸收,大量的研究结果表明,与电磁波能量衰减相关的参量,如吸收频率、吸收厚度和吸收带宽,与吸波材料的成分和微观结构有着密切的联系。为了得到轻质宽频电磁波吸收材料,一方面电磁波应通过介质表面尽可能多地进入到材料内部,这需要材料具有良好的空间阻抗匹配性;另一方面,进入到材料内部的电磁波应尽可能多地衰减,转化成热能或其他形式的能量,这需要吸波材料具有较高的电损耗或磁损耗。
铁氧体吸波材料在低频下具有良好的阻抗匹配性,但在高频波段,磁滞效应和涡流效应都随之减弱,可以通过元素掺杂、制备纳米材料或表面处理技术来改善其吸波性能。金属磁性材料由于晶格结构比铁氧体简单,且没有铁氧体中磁性次格子磁矩的相互抵消,理论电磁波吸收值高于铁氧体,纳/微米结构金属磁性材料成为新一代轻质宽频吸波材料。导电聚合物作为吸波材料可以使产品的质量极大降低,通过改性的方法使其具备可调的电导率和介电常数,而添加金属、金属氧化物或碳纤维能够有效提高导电聚合物的阻抗匹配性。碳基电磁波屏蔽材料具有质轻、耐腐蚀和易加工等优点,石墨烯吸波材料通过改进其自然共振、异质结构界面、电磁耦合来增强电磁损耗,成为轻型超薄吸波材料的代表。超材料吸波结构通过对组成单元的结构和排布控制,在较宽频率范围内实现了对电磁波的吸收。
轻质宽频吸波材料不仅具有重要的军事应用价值,在民用电磁干扰防护方面也具有广阔的应用前景。本文从不同的电磁屏蔽机理及材料本征特性出发,对不同种类的新型宽频吸波材料进行了综述,研究了不同吸波体的电磁波吸收性能与微观结构的关系,对实现其轻质宽频吸收的作用机理进行了介绍,为制备性能优异的吸波材料提供了理论技术支持,为发展新一代高性能电磁波吸收材料提供了研究思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔静
高鸿
李岩
王向轲
张静静
何端鹏
吴冰
邢焰
关键词:  电磁屏蔽  电磁兼容  吸波性能  电磁损耗  吸波材料    
Abstract: With the development of intelligent communication systems, wireless network devices and electronic detection equipments, the influence of space electromagnetic wave radiation on equipments is increasing, electromagnetic wave shielding technologies have more and more applications in electromagnetic compatibility (EMC), anti-electromagnetic interference (EMI) design, and aircraft stealth. At present, the traditional absorbing materials such as ferrite, silicon carbide and graphite generally have the disadvantages of narrow absorption band and weak absorption performance. Generally, their absorbing properties are improved by doping modifications, but such materials have a large thickness with a no-ideal absorbing ability, which increase the mass of equipments and unable to achieve the purpose of aircraft weight reduction. In recent years, new lightweight and broadband absorbing materials represented by nano absorbing materials, composite conductive polymer, graphene absorbing materials, and metamaterials are getting more and more attention.
Electromagnetic wave shielding mechanism is based on the reflection and absorption of electromagnetic waves. A large number of studies have shown that the parameters for electromagnetic wave energy attenuation, such as absorption frequency, absorption thickness and absorption bandwidth, are closely related to the composition and micro-structure of the absorbing material. In order to obtain a lightweight broadband electromagnetic wave absorbing material, on one hand, electromagnetic waves should enter the inside of materials as much as possible through the surface of the medium, which requires the material to have good spatial impedance matching; on the other hand, it should enter the inside of the material as much as possible, meanwhile the electromagnetic waves entering the inside of the material should be attenuated and converted into heat or other forms of energy as much as possible, which requires the absorbing material to have as high electrical loss or magnetic loss as possible.
Ferrite materials have good impedance matching at low frequency, but when the frequency of microwave is high, hysteresis effect and eddy current effect are weakened, so we can improve its absorbing properties by element doping, preparing nanomaterials or surface treatment technology. Metallic magnetic materials have simpler lattice structure than ferrite, and there is no mutual offset of magnetic moment of magnetic sub-grids as ferrite, therefore, their theoretical wave absorption value is higher than ferrite, nano/micro structure metal magnetic materials have become a new generation of lightweight and broadband wave-absorbing materials. Conductive polymers as absorbing materials can greatly reduce the mass of the product, because through modification methods its conductivity and dielectric constant can been adjusted, and by adding metal, metal oxide or carbon fiber, the impedance matching of the material can be effectively enhanced. Carbon-based electromagnetic wave shielding materials with the advantages of light weight, corrosion resistance and easy processing are representative of lightweight ultra-thin absorbing materials, which can enhance their electromagnetic loss by improving the natural resonance, the heterostructure interface, and the electromagnetic coupling. The metamaterial absorbing structures can absorb electromagnetic waves in a wide frequency range by regulating the structure and arrangement of the constituent elements.
Lightweight broadband absorbing materials have important military applications, and also a broad application prospects in civil electromagnetic interference protection. This review begins with different electromagnetic shielding mechanisms and intrinsic properties of materials, introduces several new types of broadband absorbing materials, studies the relationship between electromagnetic wave absorption properties and microstructures of different absorbers, summarizes the mechanism for achieving broadband and lightweight absorption, provides theoretical technical support for the preparation of absorbing materials with excellent performance as well as research ideas for the development of the new generation of high-performance electromagnetic wave absorbing materials.
Key words:  electromagnetic shielding    electromagnetic compatibility    microwave absorption properties    electromagnetic loss    wave-absorbing materials
                    发布日期:  2020-04-27
ZTFLH:  TB34  
  O441  
基金资助: 国防科工局技术基础科研项目(JSZL2016203C005)
通讯作者:  gaohong_cast@sina.com   
作者简介:  孔静,2012年8月毕业于山东大学,获得材料科学与工程硕士学位。现在中国空间技术研究院航天宇航元器件工程中心工作,主要从事宇航用材料性能评价和吸波防护材料等方面的研究工作。
高鸿,于吉林大学高分子化学与物理专业获得博士学位,2008年作为访问学者就职于日本东京工业大学。主要研究方向为航天器材料选用与可靠性评价、电子材料技术。现就职于中国空间技术研究院宇航物资保障事业部,先后参研“十二五”可靠性课题、科技部“973”、“863”等国家重大课题。主持多项关键功能材料的应用验证工作,参与航天器材料发展等多项宇航材料发展规划的编写工作。
邢焰,博士,毕业于吉林大学,研究员,主要从事航天器材料体系建设和保证技术研究工作。航天材料领域专家组成员,现任中国空间技术研究院宇航物资保障事业部党委副书记。中国有色金属学会材料科学与工程学术委员会委员,环境断裂教育部重点实验室学术委员会委员,负责多项科技部“973”项目课题,国防科工局技术基础科研项目等。
引用本文:    
孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
KONG Jing, GAO Hong, LI Yan, WANG Xiangke, ZHANG Jingjing, HE Duanpeng, WU Bing, XING Yan. Research Progress of Electromagnetic Shielding Mechanism and Lightweight and Broadband Wave-absorbing Materials. Materials Reports, 2020, 34(9): 9055-9063.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110163  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9055
1 Liu L, Zhang D. Journal of Functional Materials,2015,46(3),03016(in Chinese).
刘琳,张东.功能材料,2015,46(3),03016.
2 Yuan J, Zhou X Y. Chinese Medical Equiment Journal,2011,32(5),76(in Chinese).
袁军,周小艳.医疗卫生装备,2011,32(5),76.
3 Li M Q, Hu Y M, Fang J H, et al. Material Review,2002,16(9),15.
4 Qin R H. Infrared,2006,27(8),1(in Chinese).
秦润华.红外,2006,27(8),1.
5 Wang L X, Zhang Q T. Materials Review,2005,19(9),26(in Chinese).
王丽熙,张其土.材料导报,2005,19(9),26.
6 Liu J R, Itoh M, Horikawa T, et al. Applied Physics A,2006,82(3),509.
7 Xi J B, Zhou E Z, Liu Y J, et al. Carbon,2017,124,492.
8 Chen C, Xi J B, Zhou E Z, et al. Nano-Micro Letter,2018,10(26),1.
9 Liu C J, Tian F, Zhang Y J, et al. Chinese Medical Equiment Journal,2005,26(11),26(in Chinese).
刘长军,田丰,张彦军,等.医疗卫生装备,2005,26(11),26.
10 Fang L, Gong R Z, Guan J G. Journal of Wuhan University of Technology,1999,21(6),21(in Chinese).
方亮,龚荣州,官建国.武汉工业大学学报,1999,21(6),21.
11 He Y F, Gong R Z, Nie Y, et al. Journal of Applied Physics,2005,98(8),084903-1.
12 Ellwood W B, Legg V E. Journal of Applied Physics,1937,8(5),351.
13 Wallace J L. IEEE Transaction Magnetics,1993,29(6),61.
14 Natio Y, Suetake K. IEEE Transaction Microwave Theory Technology,1971,19(1),65.
15 Li H R. Introduction to dielectric physics. Chengdu: Chengdu University of Technology Press,1990.
16 Gentner J O, Gerthsen P, Schmidt N A, et al. Journal of Applied Phy-sics,1978,49(8),4485.
17 Foster K, Littmann M F. Journal of Applied Physics,1985,57(8),4203.
18 Michielssen E, Sajer J, Ranjithan S, et al. IEEE Transaction Microwave Theory Technology,1993,41(6-7),1024.
19 Doopad Halli S S, Raghavendr S C, Revanasidda M. Materials Today: Proceedings,2018,5,1379.
20 Cui S, Shen X D, Yan L S. Electronic Components & Materials,2005,24(1),57(in Chinese).
崔升,沈晓冬,袁林生,等.电子元件与材料,2005,24(1),57.
21 Sugimoto S, Haga K, Kagotani T, et al. Journal of Magnetism and Magnetic Material,2005,290-291(2),1188.
22 Snoek J L. Physica (Amsterdam),1948,14(4),207.
23 Zhou W C, Hu X J, Bai X, et al. ACS Applied Material Interfaces,2011,3(10),3839.
24 Cheng H F, Xie W, Chu Z Y, et al. Journal of Wuhan University of Technology-Material Science Edition,2007,22(3),400.
25 Kima S S, Kima S T, Ahn J M, et al. Journal of Magnetism and Magnetic Materials,2004,271,39.
26 Sugimotos S, Maeda T, Book D, et al. Journal of Alloys and Compounds,2002,330-332,301.
27 Fan X A, Guan J, Li Z Z, et al. Journal of Material Chemistry,2010,20(9),1676.
28 Kong J, Liu W, Wang F L, et al. Journal of Solid State Chemistry,2011,184,2994.
29 Narayan C D, Shinichi Y, Masamichi H, et al. Polymer International,2005,54,256.
30 Duan L, Wen B Y. Materials Review A: Review Papers,2014,28(3),58(in Chinese).
段磊,温变英.材料导报:综述篇,2014,28(3),58.
31 Xing H L, Yin Q, Liu Z F, et al. Nano: Brief Reports and Reviews,2017,12(4),1750047-1-9.
32 Song W L, Cao M S, Lu M M, et al. Carbon,2014,66,67.
33 Chen Y, Wang Y L, Zhang H B, et al. Carbon,2015,82,67.
34 Wang C Y, Wang X X, Cao M S. Journal of Material Engineering,2016,44(10),109(in Chinese).
王婵媛,王希晰,曹茂盛.材料工程,2016,44(10),109.
35 Zhang L, Alvarez N T, Zhang M X, et al. Carbon,2015,82,353.
36 Chen Z P, Xu C, Ma C Q, et al. Advanced Materials,2013,25(9),1296.
37 Song W L, Guan X T, Fan L Z, et al. Carbon,2015,93,151.
38 Li H M, Liu L, Li H B, et al. Journal of Physics D: Applied Physics,2017,50,135303.
39 Chen X G, Ye Y, Cheng J P. Journal of Inorganic Materials,2011,5(26),449(in Chinese).
陈雪刚,叶瑛,程继鹏.无机材料学报,2011,5(26),449.
40 Han M K, Yin X W, Duan W Y, et al. Journal of the European Ceramic Society,2016,36(11),2695.
41 Ye F, Zhan L T, Yin X W, et al. Journal of Material Science and Technology,2013,29(1),55.
42 Pendry J B. Physical Review Letters,2000,85(18),3966.
43 Pendry J B, Holden A J, Robbins D, et al. IEEE Transactions on Microwave Theory and Techniques,1999,47(11),2075.
44 Seddon N, Bearpark T. Science,2003,302(5650),1537.
45 Hiroshi O, Caloz C, Itoh T. IEEE Transactions on Microwave Theory and Techniques,2004,52(3),798.
46 Eletheriades G V, Lyer A K, Kremer P C. IEEE Transactions on Microwave Theory and Techniques,2002,50(12),2702.
47 Lim J H, Kim S S. AIP Advances,2017,7(18),125223.
[1] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[2] 周影影, 周万城, 叶梦元, 谢辉. 制备时间对CIPs/Fe3O4吸波性能的影响[J]. 材料导报, 2020, 34(10): 10008-10012.
[3] 张春旋, 李艳辉, 李亚楠, 张伟. 铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能[J]. 材料导报, 2020, 34(10): 10076-10081.
[4] 李贺, 陈开斌, 罗英涛, 孙丽贞, 杜娟. 纳米碳基复合吸波材料吸波机理及性能研究进展[J]. 材料导报, 2019, 33(Z2): 73-77.
[5] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[6] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[7] 王晖, 屈绍波. 小型化频率选择表面研究现状及其应用进展[J]. 材料导报, 2019, 33(5): 881-893.
[8] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[9] 徐志超, 冯中学, 史庆南, 杨应湘, 王效琪, 起华荣. 定向凝固制备Mg98.5Zn0.5Y1合金中LPSO相的结构及其对合金电磁屏蔽性能的影响[J]. 材料导报, 2018, 32(6): 865-869.
[10] 周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 749-754.
[11] 温变英, 王雪娇, 方晓霞, 张扬. 碳系导电填料性质对PVB基功能薄膜结构及电磁屏蔽效能的影响[J]. 材料导报, 2018, 32(24): 4346-4350.
[12] 解帅, 冀志江, 水中和, 侯国艳, 李彬, 王静. 三维织物石膏基微波吸收材料的制备及性能[J]. 材料导报, 2018, 32(18): 3123-3127.
[13] 周影影, 谢辉, 陶世平, 周万城. 球磨时间对FeSi合金吸波性能的影响[J]. 材料导报, 2018, 32(16): 2738-2742.
[14] 王丽, 王哲, 宁国艳, 沈玉林, 王喜明. 木基导电电磁屏蔽材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2320-2328.
[15] 刘晓英, 肖玉, 彭家惠. 微纳技术在泡沫混凝土中的应用进展*[J]. 《材料导报》期刊社, 2017, 31(3): 80-85.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed