Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7061-7070    https://doi.org/10.11896/cldb.19030134
  无机非金属及其复合材料 |
核壳结构电磁波吸收材料研究进展
杨振楠1,2, 刘芳1, 李朝龙2, 郑超1, 曾有福1, 郑鑫1, 罗梅1, 史浩飞2
1 重庆大学材料科学与工程学院,重庆 400030;
2 中国科学院重庆绿色智能技术研究院,重庆 400714
Research Progress of Electromagnetic Wave Absorbing Materials with Core-Shell Structure
YANG Zhennan1,2, LIU Fang1, LI Chaolong2, ZHENG Chao1, ZENG Youfu1, ZHENG Xin1, LUO Mei1,
SHI Haofei2
1 College of Material Science and Engineering, Chongqing University, Chongqing 400030, China;
2 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
下载:  全 文 ( PDF ) ( 5046KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微波通信技术的发展和广泛应用,在方便人们生活的同时,产生的大量电磁波会对环境造成污染,从而威胁人们的身体健康。电磁波吸收材料(也称吸波材料)可以吸收多余的、泄漏的电磁波能量,在治理电磁波污染方面有着十分重要的经济价值与社会效益。此外,在军事工业领域,雷达隐身飞机、导弹、作战指挥车等军事装备也对吸波材料有着极为紧迫的需求,不仅要求吸波材料具有薄、轻、宽、强的特点,还要求其具有耐高温、抗氧化、高强度等性能。
   传统吸波材料(如铁氧体、羰基铁、导电炭黑)的损耗机制单一,导致其吸波频带窄、吸收能力不够强,复合化处理就成为获得优良性能吸波材料的必要手段。通常人们采取多层宏观尺度结构匹配的方式来达到宽波段吸收的目的,但通过该方法得到的吸波材料匹配厚度大,适用领域十分有限,很难同时满足吸波材料薄、轻、宽、强的要求。纳米科学技术的发展使得材料的设计与制备拓展到了原子级别,人们试图从纳米尺度上对吸收材料进行阻抗匹配设计与损耗能力改进,其中核壳结构吸波材料由于结构设计自由度大、性能优异,逐渐成为该领域的研究热点。
   近年来,对核壳结构吸波材料的探究主要是从材料本身的特性出发,采用不同损耗特性的材料进行包覆,并结合对材料微观结构和形貌的设计,来提高吸波材料的匹配特性和有效波频带宽度。其中,具有中空核壳结构和各向异性的材料(如二维片状、纳米花状、纳米管状)表现出更优异的吸波性能。此外,可选用陶瓷材料和耐温树脂作为壳层材料,以满足吸波材料的耐高温和抗氧化性能的要求。目前虽对核壳结构吸波材料的报道较多,但其研究体系尚未统一,吸波调控机理也仍有待深入研究。
   本文基于核壳结构吸波材料最新的研究进展,介绍了已报道的核壳结构吸波材料的类型,分析了核壳结构吸波材料的微观调控机制和制备方法。最后,对核壳结构吸波材料的发展进行了总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨振楠
刘芳
李朝龙
郑超
曾有福
郑鑫
罗梅
史浩飞
关键词:  吸波材料  核壳结构  类型  微观调控机制  制备方法    
Abstract: Microwave communication technology has been greatly developed and widely used, which facilitates people’s life. At the same time, a large number of electromagnetic waves also pollute the environment and threaten people’s health. Electromagnetic wave-absorbing materials, also known as wave-absorbing materials, can absorb the excess and leakage electromagnetic wave energy, which has very important economic value and social benefits in the treatment of electromagnetic wave pollution. In addition, in the field of military industry, radar stealth aircrafts, missiles, combat command vehicles and other military equipments also have a very urgent demand for wave-absorbing materials, which not only requires that the wave-absorbing materials have the characteristics of thin, light, wide and strong, but also requires high temperature resistance, oxidation resistance and high strength.
Due to the single loss mechanism of traditional wave-absorbing materials, such as ferrite, carbonyl iron, conductive carbon black, the absorption band is narrow and the absorption capacity is not strong enough. Composite treatment becomes a necessary means to obtain excellent wave-absorbing materials. The multilayer macroscopic scale structure matching is usually adopted to achieve the purpose of wide band absorption. However, the matching thickness of wave-absorbing materials obtained by this method is large, and the applicable fields are very limited. It is difficult to meet the requirements of thin, light, wide and strong of wave-absorbing materials at the same time. With the development of nanotechno-logy, the design and fabrication of materials have been extended to the atomic level. People try to improve the impedance matching and loss ability of wave-absorbing materials on nanoscale. The core-shell structure wave-absorbing materials have gradually become a research hotspot in this field because of their high degree of freedom in structure design and excellent performance.
In recent years, the research on core-shell structure wave-absorbing materials is mainly based on the essential properties of the materials. The materials with different loss characteristics are used to composite. Combining with the design of the microstructure and morphology of the mate-rials, the impedance matching characteristic and the effective bandwidth of the wave-absorbing materials are improved. Among them, materials with hollow core-shell structure and anisotropy, such as two-dimensional flake, nanoflower, nanotube, exhibit better wave-absorbing properties. In addition, ceramic materials and heat-resistant resins can be selected as shell materials to meet the requirements of high temperature and oxidation resistance of wave-absorbing materials. At present, although there are many reports on core-shell structure wave-absorbing materials, the research system of core-shell structure wave-absorbing materials has not been unified, and the regulation mechanism still needs to be further stu-died.
In this paper, based on the latest research progress of core-shell structure wave-absorbing materials, we introduced the reported types of core-shell structure wave-absorbing materials, and analyzed the microcosmic regulation mechanism and preparation methods of core-shell structure wave-absorbing materials. Finally, the development of core-shell structure wave-absorbing materials was summarized and prospected.
Key words:  wave-absorbing materials    core-shell structure    classification    microcosmic regulation mechanism    preparation methods
                    发布日期:  2020-04-10
ZTFLH:  TM25  
通讯作者:  xiaoliu@yeah.net   
作者简介:  杨振楠,2016年6月毕业于河南城建学院,获得工学学士学位。现为重庆大学材料科学与工程学院硕士研究生,在刘芳教授的指导下进行研究。2017年7月至今为中国科学院重庆绿色智能技术研究院客座研究生,主要研究方向为纳米复合材料在电磁波吸收领域的应用。
刘芳,重庆大学材料科学与工程学院副教授、硕士研究生导师。1986年7月本科毕业于重庆建筑工程学院建材系,1992年7月在重庆建筑工程学院获硕士学位,并于2010年7月至2011年7月作为访问学者至美国蒙大拿州立大学西部交通研究所工作一年从事访问研修。主要研究方向为建筑材料,在各类化学石膏特别是磷石膏的综合利用方面取得显著成果,承担或参与了多项国家级、省部级及横向科研项目,并两次获得中国石油与化学工业协会的科技进步一等奖。
引用本文:    
杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
YANG Zhennan, LIU Fang, LI Chaolong, ZHENG Chao, ZENG Youfu, ZHENG Xin, LUO Mei, SHI Haofei. Research Progress of Electromagnetic Wave Absorbing Materials with Core-Shell Structure. Materials Reports, 2020, 34(7): 7061-7070.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030134  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7061
1 Zheng H B, Gao Y X, Xu J, et al. China Ceramic Industry, 2016, 23(3), 18(in Chinese).
郑航博, 高应霞, 徐嘉, 等. 中国陶瓷工业, 2016, 23(3), 18.
2 Zhao W, Lu T L, Zhang H, et al. Materals Review A:Review Papers, 2009, 23(4), 106(in Chinese).
赵雯, 卢婷利, 张宏, 等.材料导报:综述篇, 2009, 23(4), 106.
3 Zhou Q, Yin X W, Zhang L T, et al. Science & Technology Review, 2016(18), 40(in Chinese).
周倩, 殷小玮, 张立同, 等.科技导报, 2016(18), 40.
4 Huo J, Wang L, Yu H. Journal of Materials Science, 2009, 44(15), 3917.
5 Zhou Y Y, Xie H, Zhou W C. Materals Review A:Review Papers, 2018, 32(3), 749(in Chinese).
周影影, 谢辉, 周万城. 材料导报:综述篇, 2018, 32(3), 749.
6 Hu X S, Shen Y, Wang L M, et al. Applied Chemical Industry, 2015(9), 1741(in Chinese).
胡小赛, 沈勇, 王黎明, 等. 应用化工, 2015(9), 1741.
7 Yuan H. Studying on microwave absorbing properties of MWNTs/EP composites. Master’s Thesis, Nanchang University, China, 2008(in Chinese).
袁华. 多壁碳纳米管/环氧树脂复合材料的吸波性能研究. 硕士学位论文, 南昌大学, 2008.
8 Li T, Zhang L, Chen Y, et al. Chemical Journal of Chinese Universities, 2015, 36(4), 772(in Chinese).
李涛, 张龙, 陈颖, 等. 高等学校化学学报, 2015, 36(4), 772.
9 Shi B F. Design and fabrication of novel multifunctionalized composite materials with core-shell structure. Master’s Thesis, East China University of Science and Technology, China, 2011(in Chinese).
石变芳. 新型多功能核壳结构复合材料的设计与制备. 硕士学位论文, 华东理工大学, 2011.
10 Liu X W, Lin W, Su R H, et al. Materals Review, 2017, 31(S2),134(in Chinese).
刘欣伟, 林伟, 苏荣华, 等. 材料导报, 2017, 31(S2), 134.
11 Qiang R, Du Y, Wang Y, et al. Carbon, 2016, 98, 599.
12 Liu J W, Cheng J, Che R C, et al. Journal of Physical Chemistry C, 2013, 117(1), 489.
13 Liu J W, Xu J J, Che R C, et al. Chemistry-A European Journal, 2013, 19(21), 6746.
14 Xu J J, Liu J W, Che R C, et al. Nanoscale, 2014, 6(11), 5782.
15 Liu J W, Xu J J, Che R C, et al. Journal of Materials Chemistry, 2012, 22(18), 9277.
16 Liu T, Xie X, Pang Y, et al. Journal of Materials Chemistry C, 2016, 4(8), 1727.
17 Ding D, Wang Y, Li X, et al. Carbon, 2017, 111, 722.
18 Luo J, Gao D. Journal of Magnetism and Magnetic Materials, 2014, 368, 82.
19 Li W, Wang L, Li G, et al. Materials Chemistry and Physics, 2015, 163, 431.
20 Li Z, Shi G, Zhao Q. Journal of Materials Science: Materials in Electro-nics, 2017, 28(8), 5887.
21 Liang L, Guo X, Bai Z, et al. Powder Technology, 2017, 319, 245.
22 Tian C, Du Y, Xu P, et al. ACS Applied Materials & Interfaces, 2015, 7(36), 20090.
23 Liang C, Wang Z. ACS Applied Materials & Interfaces, 2017, 9(46), 40690.
24 Han M, Yin X, Ren S, et al. RSC Advances, 2016, 6(8), 6467.
25 Maklakov S S, Lagarkov A N, Maklakov S A, et al. Journal of Alloys and Compounds, 2017, 706, 267.
26 Liu J, Che R, Chen H, et al. Small, 2012, 8(8),1214.
27 Huang C L, Li Y B, Zhang W, et al, Materials Review, 2018, 32(S1), 86(in Chinese).
黄成亮, 李永波, 张伟, 等. 材料导报, 2018, 32(S1), 86.
28 Cheng J. Preparation, microstructure and properties of nanomaterials with core-shell and hollow nanostructures. Master’s Thesis, Fudan University, China, 2014(in Chinese).
成瑾. 核壳及中空结构纳米材料的制备、微结构与性能研究. 硕士学位论文, 复旦大学, 2014.
29 Tian C, Du Y, Cui C, et al. Journal of Materials Science, 2017, 52(11), 6349.
30 Yan L, Wang J, Han X, et al. Nanotechnology, 2010, 21(9), 095708.
31 Yan L, Liu J, Zhao S, et al. Nano Research, 2016, 10(5), 1595.
32 Zhang Y, Zhang X, Quan B, et al. Nanotechnology, 2017, 28(11), 115704.
33 Chen Y, Xiao G, Wang T, et al. The Journal of Physical Chemistry C, 2011, 115(28), 13603.
34 Liu C, Xu Y, Wu L, et al. Journal of Materials Chemistry A, 2015, 3(19), 10566.
35 Wang Z, Wu L, Zhou J, et al. Journal of Physical Chemistry C, 2013, 117(10), 5446.
36 Li W, Lv B, Wang L, et al. RSC Advances, 2014, 4(99), 55738.
37 Liu X, Cui X, Chen Y, et al. Carbon, 2015, 95, 870.
38 Wang Y. International Journal of Materials Research, 2014, 105(1), 3.
39 Wu T, Liu Y, Zeng X, et al. ACS Applied Materials & Interfaces, 2016, 8(11), 7370.
40 Qiang R, Du Y, Zhao H, et al. Journal of Materials Chemistry A, 2015, 3(25), 13426.
41 Zhang B, Du Y C, Zhang P, et al. Journal of Applied Polymer Science, 2013, 130(3), 1909.
42 Quan B, Liang X H, Ji G B, et al. Journal of Alloys and Compounds, 2017, 728, 1065.
43 Du Y C, Liu W W, Qiang R, et al. ACS Applied Materials & Interfaces, 2014, 6(15), 12997.
44 Liu X F, Cui X R, Chen Y X, et al. Carbon, 2015, 95, 870.
45 Zhu Y F, Ni Q Q, Fu Y Q. RSC Advances, 2015, 5(5), 3748.
46 Liu Q, Cao Q, Bi H, et al. Advanced Materials, 2016, 28(3), 486.
47 Quan B, Liang X, Ji G, et al. Journal of Alloys and Compounds, 2017, 728, 1065.
48 Li C, Ji S, Jiang X, et al. Journal of Materials Science, 2018, 53(13), 9635.
49 Feng Y, Li D, Jiang L, et al. Journal of Alloys and Compounds, 2017, 694, 1224.
50 Wang Y, Zhang W, Luo C, et al. Journal of Magnetism and Magnetic Materials, 2017, 443, 358.
51 Cheng B, Chen X, Wang X, et al. Journal of Materials Science: Mate-rials in Electronics, 2017, 28(11), 7575.
52 Wang Y, Peng Z, Jiang W. Ceramics International, 2016, 42(9), 10682.
53 Liu X, Sun Y, Feng C, et al. Applied Surface Science, 2013, 280, 132.
54 Zhao B, Shao G, Fan B, et al. RSC Advances, 2014, 4(101), 57424.
55 Wang J, Or S W. AIP Advances, 2016, 6(5), 055908.
56 Feng J, Hou Y, Wang Y, et al. ACS Applied Materials & Interfaces, 2017, 9(16), 14103.
57 Zhao B, Guo X, Zhao W, et al. Nano Research, 2016, 10(1), 331.
58 Qiao M, Lei X, Ma Y, et al. Chemical Engineering Journal, 2016, 304, 552.
59 Qiao Y J. Synthesisand Perparation of Materials, National defence of Industry Press, China, 2010(in Chinese).
乔英杰. 材料合成与制备, 国防工业出版社, 2010.
60 Shi G, Zhang B, Wang X, et al. Journal of Alloys and Compounds, 2016, 655, 130.
61 Fu W Y. Study on preparation and properties of core-shell structure nanoparticles. Master’s Thesis, Jilin University, China, 2006(in Chinese).
付乌有. 核-壳结构纳米复合材料的制备及其性能研究. 硕士学位论文, 吉林大学, 2006.
62 Wang Y, Zhang W, Luo C, et al. Synthetic Metals, 2016, 220, 347.
63 Yu L, Wang J J, Xu B C, et al. Journal of Functional Materials, 2015, 46(2), 2001(in Chinese).
俞梁, 王建江, 许宝才,等. 功能材料, 2015, 46(2), 2001.
64 Shi G M, Sun W M, Lu D W, et al. Advanced Materials Research, 2012, 549, 665.
65 Wu X W, Feng Y J, Wei H, et al. Journal of Inorganic Materials, 2009, 24(1), 97.
66 Zhang X F, Huang H, Dong X L. The Journal of Physical Chemistry C, 2013, 117(16), 8563.
[1] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[2] 李贺, 陈开斌, 罗英涛, 孙丽贞, 杜娟. 纳米碳基复合吸波材料吸波机理及性能研究进展[J]. 材料导报, 2019, 33(Z2): 73-77.
[3] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[4] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[5] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[6] 杨亚文, 王娜, 任俊芳, 高贵, 陈生圣, 王宏刚. 核壳纳米复合润滑材料研究进展[J]. 材料导报, 2019, 33(19): 3242-3250.
[7] 冯爱玲, 徐榕, 王彦妮, 张亚妮, 林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[8] 孙培川, 魏清茂, 张宇振, 杨喜昆, 王剑华. 核壳型铂基燃料电池催化剂制备方法与微结构控制综述[J]. 《材料导报》期刊社, 2018, 32(9): 1427-1434.
[9] 刘兰燕,宋俊,程博闻,薛文池,郑云波. 木质素基碳纤维制备的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 405-411.
[10] 董虹星, 刘秋平, 贺跃辉. BiVO4基纳米异质结光催化材料的研究进展[J]. 材料导报, 2018, 32(19): 3358-3367.
[11] 解帅, 冀志江, 水中和, 侯国艳, 李彬, 王静. 三维织物石膏基微波吸收材料的制备及性能[J]. 材料导报, 2018, 32(18): 3123-3127.
[12] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[13] 高海涛, 王建江, 许宝才, 李泽, 刘嘉玮. “三明治”型超材料吸波体及其设计优化的研究现状*[J]. 《材料导报》期刊社, 2017, 31(3): 15-20.
[14] 曹凤, 张文彦, 张思思, 燕阳天, 杨瑞锋. 多孔金属材料的化学制备方法及性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 139-145.
[15] 李延安, 董海泉, 徐丽娜, 李蛟. 硅丙乳液包覆Mg(OH)2核壳结构纳米粒子的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(18): 97-101.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed