Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (9): 1427-1434    https://doi.org/10.11896/j.issn.1005-023X.2018.09.006
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
核壳型铂基燃料电池催化剂制备方法与微结构控制综述
孙培川1,魏清茂1,张宇振1,杨喜昆2,王剑华2
1 昆明理工大学材料科学与工程学院,昆明 650093;
2 昆明理工大学分析测试中心,昆明 650093
Core-Shell Structured Catalysts with Platinum Skin for Fuel Cells: the State-of-the-art Methodological Advances in Fabrication and Nanostructure Control
SUN Peichuan1, WEI Qingmao1, ZHANG Yuzhen1, YANG Xikun2, WANG Jianhua2
1 College of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 2434KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前催化剂是制约燃料电池走向市场的关键,限制了燃料电池发展及大规模商业应用,寻求能够同时降低催化剂成本和提高催化剂性能的有效方法十分迫切。具有核壳结构的Pt-M催化剂不仅可以降低贵金属铂的用量,而且能显著提高催化活性。本文总结了近20年来核壳型Pt-M催化剂的主要制备方法,包括晶种法、去合金法、电化学沉积法等;重点分析非贵金属-铂核壳结构(M@Pt,M = Ni、Co、Cu、Fe等)的制备途径,总结了每种方法的特点。另外,还讨论了核壳结构在纳米层次上的精细控制和设计方案,这有助于理解核壳结构对电化学催化动力学的作用规律,更好地设计开发新型催化剂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙培川
魏清茂
张宇振
杨喜昆
王剑华
关键词:  燃料电池    催化剂  核壳结构    
Abstract: At present, the catalyst is the crucial obstacle to the massive commercialization of the fuel cells, and underscores the urgency of seeking effective methods to simultaneously decrease platinum loading amount (determining the catalyst cost) and improve the activity. And the core-shell nanostructures with platinum skin offers a favorable candidate route. The present review renders a retrospective summary of the fabrication methods reported in the past two decades for the core-shell structured Pt-M catalyst, including seed growth, de-alloying, electrochemical deposition, with focus on the preparation of structures with non-precious metal core (M@Pt, M = Ni, Co, Cu, Fe). Finally, we discuss prudently the precise control and design scheme for the core-shell nanostructures, and are looking forward to benefit the development and innovation of the core-shell platinum-based catalysts.
Key words:  fuel cell    platinum    catalyst    core-shell structure
               出版日期:  2018-05-10      发布日期:  2018-07-06
ZTFLH:  O6-1  
基金资助: 国家自然科学基金(51374117;21363012)
通讯作者:  王剑华:通信作者,女,1964年生,研究员,研究方向为纳米材料、新能源材料 Tel:0871-65115227 E-mail:wjianna@163.com   
作者简介:  孙培川:男,1993年生,硕士研究生,研究方向为新能源材料 E-mail:648683711@qq.com
引用本文:    
孙培川, 魏清茂, 张宇振, 杨喜昆, 王剑华. 核壳型铂基燃料电池催化剂制备方法与微结构控制综述[J]. 《材料导报》期刊社, 2018, 32(9): 1427-1434.
SUN Peichuan, WEI Qingmao, ZHANG Yuzhen, YANG Xikun, WANG Jianhua. Core-Shell Structured Catalysts with Platinum Skin for Fuel Cells: the State-of-the-art Methodological Advances in Fabrication and Nanostructure Control. Materials Reports, 2018, 32(9): 1427-1434.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.09.006  或          http://www.mater-rep.com/CN/Y2018/V32/I9/1427
1 Bing Y, Liu H, Zhang L, et al. ChemInform abstract: Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction[J].Chemical Society Reviews,2010,39(6):2184.
2 Cui C, Gan L, Heggen M,et al. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis[J].Nature Materials,2013,12(8):765.
3 Sui S, Wang X, Zhou X,et al. A comprehensive review of Pt electrocatalysts for oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells[J].Journal of Materials Chemistry A,2017,5:1808.
4 Colic V, Bandarenka A S. Pt-alloy electrocatalysts for the oxygen reduction reaction: From model surfaces to nanostructured systems[J].ACS Catalysis,2016,6(8):5378.
5 Liu Bin, Liao Shijun,Liang Zhenxing.Core-shell structure: The best way to achieve low-Pt fuel cell electrocatalysts[J].Progress in Che-mistry,2011(5):852(in Chinese).
刘宾,廖世军,梁振兴.核壳结构:燃料电池中实现低铂电催化剂的最佳途径[J].化学进展,2011(5):852.
6 Mazumder V, Chi M, More K L, et al. Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles[J].Angewandte Chemie International Edition,2010,122(49):9558.
7 Mazumder V, Chi M, More K L, et al. Core/shell Pd/FePt nano-particles as an active and durable catalyst for the oxygen reduction reaction[J].Journal of the American Chemical Society,2010,132(23):7848.
8 Godínez-Salomón F, Hallen-López M, Solorza-Feria O. Enhanced electroactivity for the oxygen reduction on Ni@Pt core-shell nanoca-talysts[J].International Journal of Hydrogen Energy,2012,37(19):14902.
9 Zhu H, Li X, Wang F. Synthesis and characterization of Cu@Pt/C core-shell structured catalysts for proton exchange membrane fuel cell[J].International Journal of Hydrogen Energy,2011,36(15):9151.
10 Ali S, Ahmed R,Sohail M, et al. Co@Pt core-shell nanoparticles supported on carbon nanotubes as promising catalyst for methanol electro-oxidation[J].Journal of Industrial & Engineering Chemistry,2015,28:344.
11 Ahrenstorf K, Heller H, Kornowski A, et al. Nucleation and growth mechanism of NixPt1-x nanoparticles[J].Advanced Functional Materials,2008,18(23):3850.
12 Sarkar A, Manthiram A. Synthesis of Pt@Cu core-shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells[J].The Journal of Physical Chemistry C,2010,114(10):4725.
13 Hwang E T, Lee Y W, Park H C, et al. Synthesis of Pt-rich@Pt-Ni alloy core-shell nanoparticles using halides[J].RSC Advances,2015,5(11):8301.
14 Zhang Haiyan, Cao Chunhui, Zhao Jian, et al. Recent development of Pt-based core-shell structured electrocatalysts in fuel cells[J].Chinese Journal of Catalysis,2012,33(2):222(in Chinese).
张海艳,曹春晖,赵健,等.燃料电池Pt基核壳结构电催化剂的最新研究进展[J].催化学报,2012,33(2):222.
15 Lim B, Wang J, Camargo P H, et al. Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth[J].Nano Letters,2008,8(8):2535.
16 Jiang M, Lim B, Tao J, et al. Epitaxial overgrowth of platinum on palladium nanocrystals[J].Nanoscale,2010,2(11):2406.
17 Zhang H, Jin M, Wang J, et al. Nanocrystals composed of alternating shells of Pd and Pt can be obtained by sequentially adding diffe-rent precursors[J].Journal of the American Chemical Society,2011,133(27):10422.
18 Yang Z, Zhang Y, Wang J, et al. First-principles study on the Ni@Pt12 Ih core-shell nanoparticles: A good catalyst for oxygen reduction reaction[J].Physics Letters A,2011,375(35):3142.
19 Chen Y, Liang Z, Yang F, et al. Ni-Pt core-shell nanoparticles as oxygen reduction electrocatalysts: Effect of Pt shell coverage[J].Journal of Physical Chemistry C,2012,115(115):24073.
20 Koenigsmann C, Santulli A C, Gong K, et al. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction[J].Journal of the American Chemical Society,2011,133(25):9783.
21 Duan D, Liu S, Yang C, et al. Electrocatalytic performance of Ni core @ Pt shell/C core-shell nanoparticle with the Pt in nanoshell[J].International Journal of Hydrogen Energy,2013,38(33):14261.
22 Zhao Tiantian, Lin Rui, Zhang Lu, et al. Effects of Pt content on the catalytic performance of Co@Pt/C core-shell structured electrocatalysts[J].Acta Physico-Chimica Sinica,2013,29(8):1745(in Chinese).
赵天天,林瑞,张路,等.Pt含量对Co@Pt/C核壳结构催化剂性能的影响[J].物理化学学报,2013,29(8):1745.
23 Zhang S, Hao Y, Su D, et al. Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction[J].Journal of the American Chemical Society,2014,136(45):15921.
24 Sneed B T, Young A P, Jalalpoor D, et al. Shaped Pd-Ni-Pt core-sandwich-shell nanoparticles:Influence of Ni sandwich layers on catalytic electrooxidations[J].ACS Nano,2014,8(7):7239.
25 Wang X, Vara M I, Luo M, et al. Pd@Pt core-shellconcave decahedra: A class of catalysts for the oxygen reduction reaction with enhanced activity and durability[J].Journal of the American Chemical Society,2015,137(47):15036.
26 Oezaslan M, Hasché F, Strasser P. Pt-based core-shell catalyst architectures for oxygen fuel cell electrodes[J].Journal of Physical Chemistry Letters,2013,4(19):3273.
27 Koh S, Strasser P. Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying[J].Journal of the American Chemical Society,2007,129(42):12624.
28 Srivastava R, Mani P, Hahn N, et al. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co na-noparticles[J].Angewandte Chemie International Edition,2007,46(47):8988.
29 Mani P, Srivastava R, Strasser P. Dealloyed binary PtM3 (M=Cu, Co, Ni) and ternary PtNi3M (M=Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells[J].Journal of Power Sources,2011,196(2):666.
30 Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J].Nature Chemistry,2010,2(6):454.
31 Neyerlin K C, Srivastava R, Strasser P. Flutamide/leuprorelin:First report of squamous cell carcinoma of the prostate: Case report[J].ECS Transactions,2008,16(2):5.
32 Neyerlin K C, Srivastava R, Yu C, et al. Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR)[J].Journal of Power Sources,2009,186(2):261.
33 Gan L, Heggen M, Rudi S,et al. Core-shell compositional fine structures of dealloyed PtxNi1-x nanoparticles and their impact on oxygen reduction catalysis[J].Nano Letters,2012,12:5423.
34 Han B, Carlton C, Kongkanand A, et al. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells[J].Energy & Environmental Science,2014,8(1):258.
35 Luo M, Wei L, Wang F, et al. Gram-level synthesis of core-shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells[J].Journal of Power Sources,2014,270(3):34.
36 Wu Y, Wang D, Zhou G, et al. Sophisticated construction of Au islands on Pt-Ni:An ideal trimetallic nanoframe catalyst[J].Journal of the American Chemical Society,2014,136(33):11594.
37 Ahmadi M, Behafarid F, Cui C, et al. Long-range segregation phenomena in shape-selected bimetallic nanoparticles:Chemical state effects[J].ACS Nano,2015,7(10):9195.
38 Wang C, Chi M, Li D, et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces[J].Journal of the American Chemical Society,2011,133(36):14396.
39 Stamenkovic V, Mun B S, Mayrhofer K J, et al. Changing the acti-vity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J].Angewandte Chemie International Edition,2006,45(18):2897.
40 Stamenkovic V R, Mun B S, Arenz M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J].Nature Materials,2007,6(3):241.
41 Stamenkovic V R, Fowler B, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J].Science,2007,315(5811):493.
42 Wang C, Chi M, Wang G, et al. Correlation between surface che-mistry and electrocatalytic proper-ties of monodisperse PtxNi1-x nanoparticles[J].Advanced Functional Materials,2011,21:147.
43 Kuttiyiel K A, Choi Y M, Hwang S M, et al. Enhancement of the oxygen reduction on nitride stabilized Pt-M (M=Fe, Co, and Ni) core-shell nanoparticle electrocatalysts[J].Nano Energy,2015,13(15):442.
44 Oh A, Baik H, Choi D S, et al. Skeletal octahedral nanoframe with Cartesian coordinates via geometrically precise nanoscale phase segregation in a Pt@Ni core-shell nanocrystal[J].ACS Nano,2015,9(3):2856.
45 Wang J X, Inada H, et al. Oxygen reduction on well-defined core-shell nanocatalysts:Particle size, facet, and Pt shell thickness effects[J].Journal of the American Chemical Society,2009,131(47):17298.
46 Ghosh T, Vukmirovic M B, Disalvo F J, et al. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: Potential for significantly improving properties[J].Journal of the American Chemical Society,2010,132(3):906.
47 Knupp S L, Vukmirovic M B, Haldar P, et al. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on carbon-supported PdIr nanoparticles[J].Electrocatalysis,2010,1(4):213.
48 Kuttiyiel K A, Sasaki K, Choi Y M, et al. Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction[J].Energy & Environmental Science,2011,5(5):5297.
49 Karan H I, Sasaki K, Kuttiyiel K, et al. Catalytic activity of platinum monolayer on iridium and rhenium alloy nanoparticles for the oxygen reduction reaction[J].ACS Catalysis,2012,2(5):817.
50 Kuttiyiel K A, Choi Y M, et al. Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M(M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction[J].Nano Energy,2016,29:216.
51 Gong K, Su D, Adzic R R. Platinum-monolayer shell on AuNi(0.5)Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction[J].Journal of the American Chemical Society,2010,132:14364.
52 Vukmirovic M B, Zhang J, Sasaki K, et al. Platinum monolayer electrocatalysts for oxygen reduction[J].Electrochimica Acta,2005,52(6):2257.
53 Tian X, Luo J, Nan H, et al. Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction[J].Journal of the American Chemical Society,2016,138(5):1575.
54 Sasaki K, Naohara H, Choi Y, et al. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction[J].Nature Communications,2012,3(3):1115.
55 Xu Y, Dong Y, Shi J, et al. Au@Pt core-shell nanoparticles supported on multiwalled carbon nanotubes for methanol oxidation[J].Catalysis Communications,2011,13(1):54.
56 Wang L, Yamauchi Y. Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell[J].Journal of the American Chemical Society,2010,132(39):13636.57 Lyu Yang, Song Yujiang, Liu Huiyuan, et al. Pd-containing core/Pt-based shell structured electrocatalysts[J].Acta Physico-Chimica Sinica,2017,33(2):283(in Chinese).
吕洋,宋玉江,刘会园,等.内核含Pd的Pt基核壳结构电催化剂[J].物理化学学报,2017,33(2):283.
58 Varade D, Haraguchi K. Clay-supported novel bimetallic core-shell Co-Pt and Ni-Pt nanocrystals with high catalytic activities[J].Physical Chemistry Chemical Physics,2014,16(47):25770.
59 Kinoshita K. Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes[J].Journal of the Electrochemical Society,1990,137(3):845.
60 Zhang L, Roling L T, Wang X, et al. Platinum-based nanocages withsubnanometer-thick walls and well-defined, controllable facets[J].Science,2015,349(6246):412.
61 Zhao R, Liu Y, Liu C, et al. Pd@Pt core-shell tetrapods as highly active and stable electrocatalysts for the oxygen reduction reaction[J].Journal of Materials Chemistry A,2014,2(48):20855.
62 Zhang L, Iyyamperumal R, Yancey D F, et al. Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction[J].ACS Nano,2013,7(10):9168.
63 Wang G, Huang B, Xiao L, et al. Pt skin on AuCu intermetallic substrate: A strategy to maximize Pt utilization for fuel cells[J].Journal of the American Chemical Society,2014,136(27):9643.
64 Liu L, Samjeske G, Nagamatsu S, et al. Enhanced oxygen reduction reaction activity and characterization of Pt-Pd/C bimetallic fuel cell catalysts with Pt-enriched surfaces in acid media[J].Journal of Physical Chemistry C,2012,116(44):23453.
65 Yu C, Koh S, Leisch J E, et al. Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS)[J].Faraday Discuss,2009,140:283.
[1] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[2] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[3] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[4] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[5] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[6] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[7] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[8] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[9] 冯爱玲,徐榕,王彦妮,张亚妮,林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[10] 闫静,田晓,赵宣,赵丽娟,杨艳春,陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[11] 施露,张杰,陈蓉,沈美庆,单斌. 锰基多元氧化物的NO催化氧化研究进展[J]. 材料导报, 2019, 33(13): 2167-2173.
[12] 黄宁岸, 赵梓俨, 邹彦昭, 周莹. 表面处理对Pt/Al2O3光催化氧化NO的影响[J]. 材料导报, 2019, 33(12): 1921-1925.
[13] 吴晓燕, 谭维, 罗才武, 张晓文, 李密, 房琦, 谭文发. 以MnFe2O4为阻挡层的Ni-YSZ阳极支撑SOFC的效能[J]. 材料导报, 2019, 33(12): 1949-1954.
[14] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
[15] 陈雷行, 苏金瑞, 何豪, 张宗镇, 蔡彬. 质子导体固体氧化物燃料电池的PrBa0.5Sr0.5Cu2O6-δ复合阴极材料[J]. 材料导报, 2019, 33(10): 1615-1618.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed