Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (9): 1427-1434    https://doi.org/10.11896/j.issn.1005-023X.2018.09.006
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
核壳型铂基燃料电池催化剂制备方法与微结构控制综述
孙培川1,魏清茂1,张宇振1,杨喜昆2,王剑华2
1 昆明理工大学材料科学与工程学院,昆明 650093;
2 昆明理工大学分析测试中心,昆明 650093
Core-Shell Structured Catalysts with Platinum Skin for Fuel Cells: the State-of-the-art Methodological Advances in Fabrication and Nanostructure Control
SUN Peichuan1, WEI Qingmao1, ZHANG Yuzhen1, YANG Xikun2, WANG Jianhua2
1 College of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 2434KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前催化剂是制约燃料电池走向市场的关键,限制了燃料电池发展及大规模商业应用,寻求能够同时降低催化剂成本和提高催化剂性能的有效方法十分迫切。具有核壳结构的Pt-M催化剂不仅可以降低贵金属铂的用量,而且能显著提高催化活性。本文总结了近20年来核壳型Pt-M催化剂的主要制备方法,包括晶种法、去合金法、电化学沉积法等;重点分析非贵金属-铂核壳结构(M@Pt,M = Ni、Co、Cu、Fe等)的制备途径,总结了每种方法的特点。另外,还讨论了核壳结构在纳米层次上的精细控制和设计方案,这有助于理解核壳结构对电化学催化动力学的作用规律,更好地设计开发新型催化剂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙培川
魏清茂
张宇振
杨喜昆
王剑华
关键词:  燃料电池    催化剂  核壳结构    
Abstract: At present, the catalyst is the crucial obstacle to the massive commercialization of the fuel cells, and underscores the urgency of seeking effective methods to simultaneously decrease platinum loading amount (determining the catalyst cost) and improve the activity. And the core-shell nanostructures with platinum skin offers a favorable candidate route. The present review renders a retrospective summary of the fabrication methods reported in the past two decades for the core-shell structured Pt-M catalyst, including seed growth, de-alloying, electrochemical deposition, with focus on the preparation of structures with non-precious metal core (M@Pt, M = Ni, Co, Cu, Fe). Finally, we discuss prudently the precise control and design scheme for the core-shell nanostructures, and are looking forward to benefit the development and innovation of the core-shell platinum-based catalysts.
Key words:  fuel cell    platinum    catalyst    core-shell structure
出版日期:  2018-05-10      发布日期:  2018-07-06
ZTFLH:  O6-1  
基金资助: 国家自然科学基金(51374117;21363012)
通讯作者:  王剑华:通信作者,女,1964年生,研究员,研究方向为纳米材料、新能源材料 Tel:0871-65115227 E-mail:wjianna@163.com   
作者简介:  孙培川:男,1993年生,硕士研究生,研究方向为新能源材料 E-mail:648683711@qq.com
引用本文:    
孙培川, 魏清茂, 张宇振, 杨喜昆, 王剑华. 核壳型铂基燃料电池催化剂制备方法与微结构控制综述[J]. 《材料导报》期刊社, 2018, 32(9): 1427-1434.
SUN Peichuan, WEI Qingmao, ZHANG Yuzhen, YANG Xikun, WANG Jianhua. Core-Shell Structured Catalysts with Platinum Skin for Fuel Cells: the State-of-the-art Methodological Advances in Fabrication and Nanostructure Control. Materials Reports, 2018, 32(9): 1427-1434.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.09.006  或          https://www.mater-rep.com/CN/Y2018/V32/I9/1427
1 Bing Y, Liu H, Zhang L, et al. ChemInform abstract: Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction[J].Chemical Society Reviews,2010,39(6):2184.
2 Cui C, Gan L, Heggen M,et al. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis[J].Nature Materials,2013,12(8):765.
3 Sui S, Wang X, Zhou X,et al. A comprehensive review of Pt electrocatalysts for oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells[J].Journal of Materials Chemistry A,2017,5:1808.
4 Colic V, Bandarenka A S. Pt-alloy electrocatalysts for the oxygen reduction reaction: From model surfaces to nanostructured systems[J].ACS Catalysis,2016,6(8):5378.
5 Liu Bin, Liao Shijun,Liang Zhenxing.Core-shell structure: The best way to achieve low-Pt fuel cell electrocatalysts[J].Progress in Che-mistry,2011(5):852(in Chinese).
刘宾,廖世军,梁振兴.核壳结构:燃料电池中实现低铂电催化剂的最佳途径[J].化学进展,2011(5):852.
6 Mazumder V, Chi M, More K L, et al. Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles[J].Angewandte Chemie International Edition,2010,122(49):9558.
7 Mazumder V, Chi M, More K L, et al. Core/shell Pd/FePt nano-particles as an active and durable catalyst for the oxygen reduction reaction[J].Journal of the American Chemical Society,2010,132(23):7848.
8 Godínez-Salomón F, Hallen-López M, Solorza-Feria O. Enhanced electroactivity for the oxygen reduction on Ni@Pt core-shell nanoca-talysts[J].International Journal of Hydrogen Energy,2012,37(19):14902.
9 Zhu H, Li X, Wang F. Synthesis and characterization of Cu@Pt/C core-shell structured catalysts for proton exchange membrane fuel cell[J].International Journal of Hydrogen Energy,2011,36(15):9151.
10 Ali S, Ahmed R,Sohail M, et al. Co@Pt core-shell nanoparticles supported on carbon nanotubes as promising catalyst for methanol electro-oxidation[J].Journal of Industrial & Engineering Chemistry,2015,28:344.
11 Ahrenstorf K, Heller H, Kornowski A, et al. Nucleation and growth mechanism of NixPt1-x nanoparticles[J].Advanced Functional Materials,2008,18(23):3850.
12 Sarkar A, Manthiram A. Synthesis of Pt@Cu core-shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells[J].The Journal of Physical Chemistry C,2010,114(10):4725.
13 Hwang E T, Lee Y W, Park H C, et al. Synthesis of Pt-rich@Pt-Ni alloy core-shell nanoparticles using halides[J].RSC Advances,2015,5(11):8301.
14 Zhang Haiyan, Cao Chunhui, Zhao Jian, et al. Recent development of Pt-based core-shell structured electrocatalysts in fuel cells[J].Chinese Journal of Catalysis,2012,33(2):222(in Chinese).
张海艳,曹春晖,赵健,等.燃料电池Pt基核壳结构电催化剂的最新研究进展[J].催化学报,2012,33(2):222.
15 Lim B, Wang J, Camargo P H, et al. Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth[J].Nano Letters,2008,8(8):2535.
16 Jiang M, Lim B, Tao J, et al. Epitaxial overgrowth of platinum on palladium nanocrystals[J].Nanoscale,2010,2(11):2406.
17 Zhang H, Jin M, Wang J, et al. Nanocrystals composed of alternating shells of Pd and Pt can be obtained by sequentially adding diffe-rent precursors[J].Journal of the American Chemical Society,2011,133(27):10422.
18 Yang Z, Zhang Y, Wang J, et al. First-principles study on the Ni@Pt12 Ih core-shell nanoparticles: A good catalyst for oxygen reduction reaction[J].Physics Letters A,2011,375(35):3142.
19 Chen Y, Liang Z, Yang F, et al. Ni-Pt core-shell nanoparticles as oxygen reduction electrocatalysts: Effect of Pt shell coverage[J].Journal of Physical Chemistry C,2012,115(115):24073.
20 Koenigsmann C, Santulli A C, Gong K, et al. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction[J].Journal of the American Chemical Society,2011,133(25):9783.
21 Duan D, Liu S, Yang C, et al. Electrocatalytic performance of Ni core @ Pt shell/C core-shell nanoparticle with the Pt in nanoshell[J].International Journal of Hydrogen Energy,2013,38(33):14261.
22 Zhao Tiantian, Lin Rui, Zhang Lu, et al. Effects of Pt content on the catalytic performance of Co@Pt/C core-shell structured electrocatalysts[J].Acta Physico-Chimica Sinica,2013,29(8):1745(in Chinese).
赵天天,林瑞,张路,等.Pt含量对Co@Pt/C核壳结构催化剂性能的影响[J].物理化学学报,2013,29(8):1745.
23 Zhang S, Hao Y, Su D, et al. Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction[J].Journal of the American Chemical Society,2014,136(45):15921.
24 Sneed B T, Young A P, Jalalpoor D, et al. Shaped Pd-Ni-Pt core-sandwich-shell nanoparticles:Influence of Ni sandwich layers on catalytic electrooxidations[J].ACS Nano,2014,8(7):7239.
25 Wang X, Vara M I, Luo M, et al. Pd@Pt core-shellconcave decahedra: A class of catalysts for the oxygen reduction reaction with enhanced activity and durability[J].Journal of the American Chemical Society,2015,137(47):15036.
26 Oezaslan M, Hasché F, Strasser P. Pt-based core-shell catalyst architectures for oxygen fuel cell electrodes[J].Journal of Physical Chemistry Letters,2013,4(19):3273.
27 Koh S, Strasser P. Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying[J].Journal of the American Chemical Society,2007,129(42):12624.
28 Srivastava R, Mani P, Hahn N, et al. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co na-noparticles[J].Angewandte Chemie International Edition,2007,46(47):8988.
29 Mani P, Srivastava R, Strasser P. Dealloyed binary PtM3 (M=Cu, Co, Ni) and ternary PtNi3M (M=Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells[J].Journal of Power Sources,2011,196(2):666.
30 Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J].Nature Chemistry,2010,2(6):454.
31 Neyerlin K C, Srivastava R, Strasser P. Flutamide/leuprorelin:First report of squamous cell carcinoma of the prostate: Case report[J].ECS Transactions,2008,16(2):5.
32 Neyerlin K C, Srivastava R, Yu C, et al. Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR)[J].Journal of Power Sources,2009,186(2):261.
33 Gan L, Heggen M, Rudi S,et al. Core-shell compositional fine structures of dealloyed PtxNi1-x nanoparticles and their impact on oxygen reduction catalysis[J].Nano Letters,2012,12:5423.
34 Han B, Carlton C, Kongkanand A, et al. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells[J].Energy & Environmental Science,2014,8(1):258.
35 Luo M, Wei L, Wang F, et al. Gram-level synthesis of core-shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells[J].Journal of Power Sources,2014,270(3):34.
36 Wu Y, Wang D, Zhou G, et al. Sophisticated construction of Au islands on Pt-Ni:An ideal trimetallic nanoframe catalyst[J].Journal of the American Chemical Society,2014,136(33):11594.
37 Ahmadi M, Behafarid F, Cui C, et al. Long-range segregation phenomena in shape-selected bimetallic nanoparticles:Chemical state effects[J].ACS Nano,2015,7(10):9195.
38 Wang C, Chi M, Li D, et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces[J].Journal of the American Chemical Society,2011,133(36):14396.
39 Stamenkovic V, Mun B S, Mayrhofer K J, et al. Changing the acti-vity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J].Angewandte Chemie International Edition,2006,45(18):2897.
40 Stamenkovic V R, Mun B S, Arenz M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J].Nature Materials,2007,6(3):241.
41 Stamenkovic V R, Fowler B, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J].Science,2007,315(5811):493.
42 Wang C, Chi M, Wang G, et al. Correlation between surface che-mistry and electrocatalytic proper-ties of monodisperse PtxNi1-x nanoparticles[J].Advanced Functional Materials,2011,21:147.
43 Kuttiyiel K A, Choi Y M, Hwang S M, et al. Enhancement of the oxygen reduction on nitride stabilized Pt-M (M=Fe, Co, and Ni) core-shell nanoparticle electrocatalysts[J].Nano Energy,2015,13(15):442.
44 Oh A, Baik H, Choi D S, et al. Skeletal octahedral nanoframe with Cartesian coordinates via geometrically precise nanoscale phase segregation in a Pt@Ni core-shell nanocrystal[J].ACS Nano,2015,9(3):2856.
45 Wang J X, Inada H, et al. Oxygen reduction on well-defined core-shell nanocatalysts:Particle size, facet, and Pt shell thickness effects[J].Journal of the American Chemical Society,2009,131(47):17298.
46 Ghosh T, Vukmirovic M B, Disalvo F J, et al. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: Potential for significantly improving properties[J].Journal of the American Chemical Society,2010,132(3):906.
47 Knupp S L, Vukmirovic M B, Haldar P, et al. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on carbon-supported PdIr nanoparticles[J].Electrocatalysis,2010,1(4):213.
48 Kuttiyiel K A, Sasaki K, Choi Y M, et al. Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction[J].Energy & Environmental Science,2011,5(5):5297.
49 Karan H I, Sasaki K, Kuttiyiel K, et al. Catalytic activity of platinum monolayer on iridium and rhenium alloy nanoparticles for the oxygen reduction reaction[J].ACS Catalysis,2012,2(5):817.
50 Kuttiyiel K A, Choi Y M, et al. Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M(M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction[J].Nano Energy,2016,29:216.
51 Gong K, Su D, Adzic R R. Platinum-monolayer shell on AuNi(0.5)Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction[J].Journal of the American Chemical Society,2010,132:14364.
52 Vukmirovic M B, Zhang J, Sasaki K, et al. Platinum monolayer electrocatalysts for oxygen reduction[J].Electrochimica Acta,2005,52(6):2257.
53 Tian X, Luo J, Nan H, et al. Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction[J].Journal of the American Chemical Society,2016,138(5):1575.
54 Sasaki K, Naohara H, Choi Y, et al. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction[J].Nature Communications,2012,3(3):1115.
55 Xu Y, Dong Y, Shi J, et al. Au@Pt core-shell nanoparticles supported on multiwalled carbon nanotubes for methanol oxidation[J].Catalysis Communications,2011,13(1):54.
56 Wang L, Yamauchi Y. Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell[J].Journal of the American Chemical Society,2010,132(39):13636.57 Lyu Yang, Song Yujiang, Liu Huiyuan, et al. Pd-containing core/Pt-based shell structured electrocatalysts[J].Acta Physico-Chimica Sinica,2017,33(2):283(in Chinese).
吕洋,宋玉江,刘会园,等.内核含Pd的Pt基核壳结构电催化剂[J].物理化学学报,2017,33(2):283.
58 Varade D, Haraguchi K. Clay-supported novel bimetallic core-shell Co-Pt and Ni-Pt nanocrystals with high catalytic activities[J].Physical Chemistry Chemical Physics,2014,16(47):25770.
59 Kinoshita K. Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes[J].Journal of the Electrochemical Society,1990,137(3):845.
60 Zhang L, Roling L T, Wang X, et al. Platinum-based nanocages withsubnanometer-thick walls and well-defined, controllable facets[J].Science,2015,349(6246):412.
61 Zhao R, Liu Y, Liu C, et al. Pd@Pt core-shell tetrapods as highly active and stable electrocatalysts for the oxygen reduction reaction[J].Journal of Materials Chemistry A,2014,2(48):20855.
62 Zhang L, Iyyamperumal R, Yancey D F, et al. Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction[J].ACS Nano,2013,7(10):9168.
63 Wang G, Huang B, Xiao L, et al. Pt skin on AuCu intermetallic substrate: A strategy to maximize Pt utilization for fuel cells[J].Journal of the American Chemical Society,2014,136(27):9643.
64 Liu L, Samjeske G, Nagamatsu S, et al. Enhanced oxygen reduction reaction activity and characterization of Pt-Pd/C bimetallic fuel cell catalysts with Pt-enriched surfaces in acid media[J].Journal of Physical Chemistry C,2012,116(44):23453.
65 Yu C, Koh S, Leisch J E, et al. Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS)[J].Faraday Discuss,2009,140:283.
[1] 戴江炫, 姬文辉, 卢嘉铖, 谢瑞杰, 李林. 汗液发电:原理、器件结构及应用[J]. 材料导报, 2025, 39(2): 24030268-16.
[2] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[3] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[4] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[5] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[6] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[7] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[8] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[9] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[10] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[11] 高娜, 庞佩琦, 李智, 牟国栋, 崔天成, 杜贤龙, 李涛, 肖国萍. 电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响[J]. 材料导报, 2024, 38(24): 23100052-5.
[12] 王帆, 赵宇辰, 郑文跃. 氨分解制氢钌基催化剂的研究进展[J]. 材料导报, 2024, 38(19): 23050178-13.
[13] 黄勇, 郭冲霄, 倪佳苗, 刘悦, 范同祥. 金属催化辅助无转移石墨烯薄膜制备技术研究进展[J]. 材料导报, 2024, 38(15): 23050126-15.
[14] 刘方旺, 王建花, 于明月, 张莉, 张倩, 孟建华, 高庆平, 江津河. 构建多活性位点的单组分金属卤化物@吡啶/咪唑多孔有机框架用于CO2的高效吸收与催化[J]. 材料导报, 2024, 38(15): 23030227-10.
[15] 谢雨秋, 郭伟. 料浆I/C比对PEMFC合金催化剂氧传质阻力的影响规律[J]. 材料导报, 2024, 38(14): 23010027-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed