Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23050126-15    https://doi.org/10.11896/cldb.23050126
  金属与金属基复合材料 |
金属催化辅助无转移石墨烯薄膜制备技术研究进展
黄勇, 郭冲霄, 倪佳苗, 刘悦*, 范同祥
上海交通大学材料科学与工程学院,金属基复合材料国家重点实验室,上海 200240
Progress in the Synthesis of Transfer-Free Graphene Films with Metal Catalyst
HUANG Yong, GUO Chongxiao, NI Jiamiao, LIU Yue*, FAN Tongxiang
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 52727KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种原子级别厚度的二维碳材料,石墨烯已经被证明具有优异的电学、光学、热学等综合物化性能。但是如何制备高质量、大面积晶圆级别的石墨烯薄膜仍然是激发人们进行科学研究以及器件集成领域的一大热点问题。传统过渡金属催化合成石墨烯薄膜的化学气相沉积工艺往往需要复杂费时的后处理转移工序,会对石墨烯薄膜本征性能造成巨大破坏,因此研究如何在介电基底上直接制备高质量大面积的石墨烯薄膜具有重大意义。基于此目的而兴起的无转移石墨烯薄膜制备研究已经取得了显著的科学成就,其中金属催化辅助合成无转移石墨烯薄膜的研究尤其引人注目,并且基于原位合成石墨烯薄膜性能测试及器件验证均取得了不错的效果。尽管如此,由于催化剂种类、形态以及结构设计等因素的不同,针对金属催化剂在无转移石墨烯薄膜合成过程中的工艺策略,不同的研究有不同的设计。本文基于无转移石墨烯薄膜制备的最新研究结果,对金属在催化转化获得无转移石墨烯过程中的作用机理和设计策略进行了系统全面的分析,对促进高质量晶圆级石墨烯薄膜的合成及在电子、光电子等功能器件领域的应用具有重要的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄勇
郭冲霄
倪佳苗
刘悦
范同祥
关键词:  石墨烯薄膜  无转移制备技术  金属催化剂  介电基底    
Abstract: As a kind of atomic thin two-dimensional materials with a hexagonal honeycomb structure of carbon atoms, graphene exhibits exceptional electronic, optical and thermal properties and attracts worldwide interests for related functional device applications. Before the integration of semiconductor devices, high-quality and single crystal graphene is prerequisite for scientific research and practical application. Due to the sophisticated and time-consuming post-transferring procedure, metal-catalyzed synthesis of graphene films based on the chemical vapor deposition more or less introduces structural defects (cracks, winkles and tears) and degrades the intrinsic superb properties of graphene. Growth of graphene films on dielectric substrates, therefore, plays a significant role in the large-scale functional applications of graphene. Metal-assisted transfer-free synthesis of graphene on the dielectric substrates has achieved high-level accomplishment and gained excellent detector response in the devices. Unfortunately, the microstructural mechanism and design strategy of metal catalyst in the transfer-free graphene film growth have not been clear and systematical elucidated. Given all that we try to interpret and conclude the effects and design of metal catalysts motivated the direct synthesis of graphene film on non-catalytic substrates in this paper. These comprehensive analyses will provide a valuable guidance for the application of graphene film in electronic, optoelectronic and even thermo-response devices.
Key words:  graphene film    transfer-free synthesis    metal catalyst    dielectric substrates
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TQ127  
基金资助: 国家自然科学基金(52171144)
通讯作者:  * 刘悦,上海交通大学材料科学与工程学院特别研究员。2008年获复旦大学微电子系学士学位,2014年获美国德州农工大学材料科学与工程博士学位,2014—2017年于美国洛斯阿拉莫斯国家实验室从事博士后研究工作。研究方向为功能金属基复合薄膜材料制备及界面调控、复杂极端服役条件下材料性能及智能预测。迄今为止发表SCI论文80余篇,专利20余项。近年来应邀发表综述性文章10余篇。yliu23@sjtu.edu.cn   
作者简介:  黄勇,2020年6月于东北大学材料科学与工程学院获得工学学士学位。现为上海交通大学材料科学与工程学院硕士研究生,在刘悦特别研究员和范同祥教授的指导下进行研究。目前主要研究领域为基于固体碳源的无转移石墨烯薄膜金属催化制备及性能研究。
引用本文:    
黄勇, 郭冲霄, 倪佳苗, 刘悦, 范同祥. 金属催化辅助无转移石墨烯薄膜制备技术研究进展[J]. 材料导报, 2024, 38(15): 23050126-15.
HUANG Yong, GUO Chongxiao, NI Jiamiao, LIU Yue, FAN Tongxiang. Progress in the Synthesis of Transfer-Free Graphene Films with Metal Catalyst. Materials Reports, 2024, 38(15): 23050126-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050126  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23050126
1 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666.
2 Yu Y, Wang T, Chen X, et al. Light:Science & Applications, 2021, 10(1), 117.
3 Wang Y, Li X, Jiang Z, et al. Nature Communications, 2021, 12(1), 5076.
4 Chang H, Chen Z, Liu B, et al. Advanced Science, 2020, 7(15), 2001272.
5 Lu C, Gao Z, Liu B, et al. Advanced Functional Materials, 2021, 31(20), 2101233.
6 Ma Y, Qi P, Ma J, et al. Advanced Science, 2021, 8(16), 2100488.
7 Zhang X, Chen C, Gao S, et al. Journal of Energy Storage, 2021, 42, 103037.
8 Lin Y, Kang Q, Wei H, et al. Nano-Micro Letters, 2021, 13(1), 180.
9 Shan J, Wang S, Zhou F, et al. Advanced Materials, 2021, 33(41), 2103141.
10 Yang K M, Tang P Z, Zhang Q, et al. Scripta Materialia, 2021, 203, 114001.
11 Yang M, Liu Y, Fan T, et al. Progress in Materials Science, 2020, 110, 100652.
12 Yang K M, Ma Y C, Zhang Z Y, et al. Acta Materialia, 2020, 197, 342.
13 Xu X, Yi D, Wang Z, et al. Advanced Materials, 2018, 30(6), 1702944.
14 Kotsidi M, Gorgolis G, Pastore Carbone M G, et al. Nature Nanotechnology, 2021, 16(9), 1004.
15 Zhao Z, Hou T, Wu N, et al. Nano Letters, 2021, 21(2), 1161.
16 Hernandez Y, Nicolosi V, Lotya M, et al. Nature Nanotechnology, 2008, 3(9), 563.
17 Park S, Ruoff R S. Nature Nanotechnology, 2009, 4(4), 217.
18 Emtsev K V, Bostwick A, Horn K, et al. Nature Materials, 2009, 8(3), 203.
19 Sutter P W, Flege J I, Sutter E A. Nature Materials, 2008, 7(5), 406.
20 Toh C T. Nature Electronics, 2021, 4, 633.
21 Chen C, Lin Y, Zhou W, et al. Nature Electronics, 2021, 4, 653.
22 Yang M, Hu L, Tang X, et al. Carbon, 2016, 110, 480.
23 Yang M, Weng L, Zhu H, et al. Carbon, 2017, 118, 250.
24 Bae S, Kim H, Lee Y, et al. Nature Nanotechnology, 2010, 5(8), 574.
25 Wang M, Huang M, Luo D, et al. Nature, 2021, 596(7873), 519.
26 Sun B, Pang J, Cheng Q, et al. Advanced Materials Technologies, 2021, 6(7), 2000744.
27 Xin X, Chen J, Ma L, et al. Small Methods, 2023, 7(7), 2300156.
28 Kang S, Yoon T, Kim S, et al. ACS Applied Nano Materials, 2019, 2(4), 1980.
29 Yang S J, Choi S, Odongo Ngome F O, et al. Nano Letters, 2019, 19(6), 3590.
30 Hong N, Kireev D, Zhao Q, et al. Advanced Materials, 2022, 34(3), 2106615.
31 Chandrashekar B N, Deng B, Smitha A S, et al. Advanced Materials, 2015, 27(35), 5210.
32 Lin W H, Chen T H, Chang J K, et al. ACS Nano, 2014, 8(2), 1784.
33 Leong W S, Wang H, Yeo J, et al. Nature Communications, 2019, 10(1), 867.
34 Verguts K, Coroa J, Huyghebaert C, et al. Nanoscale, 2018, 10(12), 5515.
35 Wang Y, Zheng Y, Xu X, et al. ACS Nano, 2011, 5(12), 9927.
36 Liu L, Shang W, Han C, et al. ACS Applied Materials & Interfaces, 2018, 10(8), 7289.
37 Lupina G, Kitzmann J, Costina I, et al. ACS Nano, 2015, 9(5), 4776.
38 Wong C H A, Sofer Z, Kubešová M, et al. Proceedings of the National Academy of Sciences, 2014, 111(38), 13774.
39 Gong C, Floresca H C, Hinojos D, et al. The Journal of Physical Chemistry C, 2013, 117(44), 23000.
40 Yeh C H, Teng P Y, Chiu Y C, et al. ACS Applied Materials & Interfaces, 2019, 11(6), 6336.
41 Chen Z, Qi Y, Chen X, et al. Advanced Materials, 2019, 31(9), 1803639.
42 Wei S, Hao Y, Ying Z, et al. Journal of Materials Science & Technology, 2020, 37, 71.
43 Wei N, Li Q, Cong S, et al. Journal of Materials Chemistry A, 2019, 7(9), 4813.
44 Liu B, Sun J, Liu Z. ChemNanoMat, 2020, 6(4), 483.
45 Meng X, Cheng Y, Wang P, et al. ACS Applied Materials & Interfaces, 2021, 13(4), 4835.
46 Cheng T, Liu Z, Liu Z, et al. ACS Nano, 2021, 15(4), 7399.
47 Yang J, He W, Jiang Q, et al. Carbon, 2020, 161, 123.
48 Chen Z, Chang H, Cheng T, et al. Advanced Functional Materials, 2020, 30(31), 2001483.
49 Wang H, Xue X, Jiang Q, et al. Journal of the American Chemical Society, 2019, 141(28), 11004.
50 Vishwakarma R, Zhu R, Abuelwafa A A, et al. ACS Omega, 2019, 4(6), 11263.
51 Xu S, Wang S, Chen Z, et al. Advanced Functional Materials, 2020, 30(34), 2003302.
52 Ci H, Chang H, Wang R, et al. Advanced Materials, 2019, 31(29), 1901624.
53 Ci H, Ren H, Qi Y, et al. Nano Research, 2018, 11(6), 3106.
54 Li Y, Zhou K, Ci H, et al. ChemSusChem, 2023, 16, e202300865.
55 Zhang C, Cai Y, Guo L, et al. Ceramics International, 2022, 48(15), 21789.
56 Lu M, Zhang X, Yin W, et al. European Journal of Inorganic Chemistry, 2023, 26(13), e202200779.
57 Bleu Y, Bourquard F, Michalon J Y, et al. Applied Surface Science, 2021, 555, 149492.
58 Vaari J, Lahtinen J, Hautojärvi P. Catalysis Letters, 1997, 44(1), 43.
59 Shan J, Fang S, Wang W, et al. National Science Review, 2021, 9(7), nwab169.
60 Li X, Cai W, An J, et al. Science, 2009, 324(5932), 1312.
61 Wang J, Zeng M, Tan L, et al. Scientific Reports, 2013, 3(1), 2670.
62 Ding G, Zhu Y, Wang S, et al. Carbon, 2013, 53, 321.
63 Oden L L, Gokcen N A. Metallurgical Transactions B, 1993, 24(1), 53.
64 Naghdi S, Rhee K Y, Park S J. Thin Solid Films, 2018, 657, 55.
65 Lee J H, Lee E K, Joo W J, et al. Science, 2014, 344(6181), 286.
66 Arnoult W J, Mclellan R B. Scripta Metallurgica, 1972, 6(10), 1013.
67 Gao L, Ren W, Xu H, et al. Nature Communications, 2012, 3(1), 699.
68 Yu Q, Lian J, Siriponglert S, et al. Applied Physics Letters, 2008, 93(11), 113103.
69 Sun J, Nam Y, Lindvall N, et al. Applied Physics Letters, 2014, 104(15), 152107.
70 Zheng M, Takei K, Hsia B, et al. Applied Physics Letters, 2010, 96(6), 063110.
71 Kosaka M, Takano S, Hasegawa K, et al. Carbon, 2015, 82, 254.
72 Coraux J, N‘Diaye A T, Busse C, et al. Nano Letters, 2008, 8(2), 565.
73 Li X, Magnuson C W, Venugopal A, et al. Journal of the American Chemical Society, 2011, 133(9), 2816.
74 Gottardi S, Müller K, Bignardi L, et al. Nano Letters, 2015, 15(2), 917.
75 Nguyen P, Behura S K, Seacrist M R, et al. ACS Applied Materials & Interfaces, 2018, 10(31), 26517.
76 Yang G, Kim H Y, Jang S, et al. ACS Applied Materials & Interfaces, 2016, 8(40), 27115.
77 Shin H J, Choi W M, Yoon S M, et al. Advanced Materials, 2011, 23(38), 4392.
78 Zhuo Q Q, Wang Q, Zhang Y P, et al. ACS Nano, 2015, 9(1), 594.
79 Moreno-López J C, Fedi F, Argentero G, et al. The Journal of Physical Chemistry C, 2020, 124(40), 22150.
80 Emre Ayhan M, Kalita G, Papon R, et al. Materials Letters, 2014, 129, 76.
81 Wang G, Zhang M, Zhu Y, et al. Scientific Reports, 2013, 3(1), 2465.
82 Wang Z, Xue Z, Zhang M, et al. Small, 2017, 13(28), 1700929.
83 Li J, Zheng P, Dong L, et al. IEEE Sensors Journal, 2021, 21(4), 5164.
84 Han Y, Park B J, Eom J H, et al. Advanced Science, 2021, 8(7), 2003697.
85 Lee C S, Shin K W, Song H J, et al. Advanced Electronic Materials, 2018, 4(6), 1700624.
86 Li H, Shi D, Guo P, et al. Materials Letters, 2020, 278, 128468.
87 Zhao Y, Wang X, Fu E, et al. Carbon, 2018, 139, 732.
88 Machac P, Pajtai J. Journal of Electrical Engineering, 2018, 69(3), 239.
89 Dai C Y, Wang W C, Tseng C A, et al. The Journal of Physical Chemistry C, 2020, 124(42), 23094.
90 Ding F C, Dai C Y, Yao C L, et al. Chemistry of Materials, 2022, 34(12), 5471.
91 Dong Y, Guo S, Mao H, et al. ACS Applied Electronic Materials, 2020, 2(1), 238.
92 Xiao Z, Williams L, Kisslinger K, et al. Nanotechnology, 2020, 31(48), 485203.
93 Tiwari R N, Tripathi M, Yoshimura M, et al. Materials Research Bulletin, 2018, 107, 147.
94 Takami T, Seino R, Yamazaki K, et al. Journal of Physics D:Applied Physics, 2014, 47(9), 094015.
95 Chen Y, Jiang K, Zang H, et al. Carbon, 2021, 175, 155.
96 Kim K J, Cho S Y, Kim H M, et al. Journal of Vacuum Science & Technology B, 2018, 36(2), 021802.
97 Fujita J I, Hiyama T, Hirukawa A, et al. Scientific Reports, 2017, 7(1), 12371.
98 Zhang P, Liu X, Fang X, et al. Journal of Materials Science, 2020, 55(7), 2787.
99 Yang J, Jiang Q, Chen Z, et al. Diamond and Related Materials, 2019, 91, 112.
100 Zhu H, Shi Z, Zhang C, et al. Applied Surface Science, 2022, 576, 151806.
101 Dong Y, Xie Y, Xu C, et al. APL Materials, 2018, 6(2), 026802.
102 Kaplas T, Svirko Y. Carbon, 2014, 70, 273.
103 Teng P Y, Lu C C, Akiyama-Hasegawa K, et al. Nano Letters, 2012, 12(3), 1379.
104 Shin J H, Kim S H, Kwon S S, et al. Carbon, 2018, 129, 785.
105 Kim H, Song I, Park C, et al. ACS Nano, 2013, 7(8), 6575.
106 Song I, Park Y, Cho H, et al. Angewandte Chemie International Edition, 2018, 57(47), 15374.
107 Murakami K, Tanaka S, Hirukawa A, et al. Applied Physics Letters, 2015, 106(9), 093112.
108 Tan L, Zeng M, Wu Q, et al. Small, 2015, 11(15), 1840.
109 Zhao Y, Li Y, Chen Y, et al. Nano Research, 2021, 14(5), 1280.
110 Han S, Yang F, Liu L, et al. Journal of Materials Science & Technology, 2017, 33(8), 800.
111 Li Y, Zhao Y, Chen Y, et al. Applied Surface Science, 2020, 529, 147082.
112 Sun Z, Yan Z, Yao J, et al. Nature, 2010, 468(7323), 549.
113 Lee E, Lee H C, Jo S B, et al. Advanced Functional Materials, 2016, 26(4), 562.
114 Lee E, Lee S G, Lee H C, et al. Advanced Materials, 2018, 30(15), 1706569.
115 Baek J, Kim J, Kim J, et al. Carbon, 2019, 143, 294.
116 Baah M, Obraztsov P, Paddubskaya A, et al. ACS Applied Materials & Interfaces, 2020, 12(5), 6226.
117 Li Q, Zhao Z, Yan B, et al. Advanced Materials, 2017, 29(32), 1701325.
118 Nakagawa K, Takahashi H, Shimura Y, et al. RSC Advances, 2019, 9(65), 37906.
119 Li J, Chen M, Samad A, et al. Nature Materials, 2022, 21(7), 740.
120 Pezone R, Baglioni G, Sarro P M, et al. ACS Applied Materials & Interfaces, 2022, 14(18), 21705.
121 Karankova S, Kovalchuk O, Lee S, et al. Applied Surface Science, 2023, 611, 155641.
122 Levendorf M P, Ruiz-Vargas C S, Garg S, et al. Nano Letters, 2009, 9(12), 4479.
123 Yan Z, Peng Z, Sun Z, et al. ACS Nano, 2011, 5(10), 8187.
124 Su C Y, Lu A Y, Wu C Y, et al. Nano Letters, 2011, 11(9), 3612.
125 Kwak J, Chu J H, Choi J K, et al. Nature Communications, 2012, 3(1), 645.
126 Kato T, Hatakeyama R. ACS Nano, 2012, 6(10), 8508.
127 Chen Y Z, Medina H, Lin H C, et al. Nanoscale, 2015, 7(5), 1678.
128 Wu Z, Guo Y, Guo Y, et al. Nanoscale, 2016, 8(5), 2594.
129 Dong Y, Xie Y, Xu C, et al. Nanotechnology, 2018, 29(36), 365301.
130 Park B J, Choi J S, Eom J H, et al. ACS Nano, 2018, 12(2), 2008.
131 Zhou L, Wei S, Ge C, et al. Nanomaterials, 2019, 9(7), 964.
132 Zhang K, John Hart A. Applied Surface Science, 2022, 602, 154367.
[1] 宋冬梅, 郑秋燕, 潘廷仙, 胡长刚, 同鑫, 田娟. ZIFs材料对Fe/N/C催化剂氧还原性能的影响[J]. 材料导报, 2024, 38(10): 22100278-7.
[2] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[3] 汪超翔, 郭冲霄, 刘 悦, 范同祥. 采用固体碳源制备石墨烯薄膜研究进展[J]. 材料导报, 2022, 36(16): 21030237-9.
[4] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[5] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[6] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[7] 张自元, 门传玲, 曹军, 李振鹏, 赵明杰. 借助聚合物实现石墨烯转移的技术进展*[J]. 《材料导报》期刊社, 2017, 31(3): 130-135.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed