Abstract: As a kind of atomic thin two-dimensional materials with a hexagonal honeycomb structure of carbon atoms, graphene exhibits exceptional electronic, optical and thermal properties and attracts worldwide interests for related functional device applications. Before the integration of semiconductor devices, high-quality and single crystal graphene is prerequisite for scientific research and practical application. Due to the sophisticated and time-consuming post-transferring procedure, metal-catalyzed synthesis of graphene films based on the chemical vapor deposition more or less introduces structural defects (cracks, winkles and tears) and degrades the intrinsic superb properties of graphene. Growth of graphene films on dielectric substrates, therefore, plays a significant role in the large-scale functional applications of graphene. Metal-assisted transfer-free synthesis of graphene on the dielectric substrates has achieved high-level accomplishment and gained excellent detector response in the devices. Unfortunately, the microstructural mechanism and design strategy of metal catalyst in the transfer-free graphene film growth have not been clear and systematical elucidated. Given all that we try to interpret and conclude the effects and design of metal catalysts motivated the direct synthesis of graphene film on non-catalytic substrates in this paper. These comprehensive analyses will provide a valuable guidance for the application of graphene film in electronic, optoelectronic and even thermo-response devices.
黄勇, 郭冲霄, 倪佳苗, 刘悦, 范同祥. 金属催化辅助无转移石墨烯薄膜制备技术研究进展[J]. 材料导报, 2024, 38(15): 23050126-15.
HUANG Yong, GUO Chongxiao, NI Jiamiao, LIU Yue, FAN Tongxiang. Progress in the Synthesis of Transfer-Free Graphene Films with Metal Catalyst. Materials Reports, 2024, 38(15): 23050126-15.
1 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666. 2 Yu Y, Wang T, Chen X, et al. Light:Science & Applications, 2021, 10(1), 117. 3 Wang Y, Li X, Jiang Z, et al. Nature Communications, 2021, 12(1), 5076. 4 Chang H, Chen Z, Liu B, et al. Advanced Science, 2020, 7(15), 2001272. 5 Lu C, Gao Z, Liu B, et al. Advanced Functional Materials, 2021, 31(20), 2101233. 6 Ma Y, Qi P, Ma J, et al. Advanced Science, 2021, 8(16), 2100488. 7 Zhang X, Chen C, Gao S, et al. Journal of Energy Storage, 2021, 42, 103037. 8 Lin Y, Kang Q, Wei H, et al. Nano-Micro Letters, 2021, 13(1), 180. 9 Shan J, Wang S, Zhou F, et al. Advanced Materials, 2021, 33(41), 2103141. 10 Yang K M, Tang P Z, Zhang Q, et al. Scripta Materialia, 2021, 203, 114001. 11 Yang M, Liu Y, Fan T, et al. Progress in Materials Science, 2020, 110, 100652. 12 Yang K M, Ma Y C, Zhang Z Y, et al. Acta Materialia, 2020, 197, 342. 13 Xu X, Yi D, Wang Z, et al. Advanced Materials, 2018, 30(6), 1702944. 14 Kotsidi M, Gorgolis G, Pastore Carbone M G, et al. Nature Nanotechnology, 2021, 16(9), 1004. 15 Zhao Z, Hou T, Wu N, et al. Nano Letters, 2021, 21(2), 1161. 16 Hernandez Y, Nicolosi V, Lotya M, et al. Nature Nanotechnology, 2008, 3(9), 563. 17 Park S, Ruoff R S. Nature Nanotechnology, 2009, 4(4), 217. 18 Emtsev K V, Bostwick A, Horn K, et al. Nature Materials, 2009, 8(3), 203. 19 Sutter P W, Flege J I, Sutter E A. Nature Materials, 2008, 7(5), 406. 20 Toh C T. Nature Electronics, 2021, 4, 633. 21 Chen C, Lin Y, Zhou W, et al. Nature Electronics, 2021, 4, 653. 22 Yang M, Hu L, Tang X, et al. Carbon, 2016, 110, 480. 23 Yang M, Weng L, Zhu H, et al. Carbon, 2017, 118, 250. 24 Bae S, Kim H, Lee Y, et al. Nature Nanotechnology, 2010, 5(8), 574. 25 Wang M, Huang M, Luo D, et al. Nature, 2021, 596(7873), 519. 26 Sun B, Pang J, Cheng Q, et al. Advanced Materials Technologies, 2021, 6(7), 2000744. 27 Xin X, Chen J, Ma L, et al. Small Methods, 2023, 7(7), 2300156. 28 Kang S, Yoon T, Kim S, et al. ACS Applied Nano Materials, 2019, 2(4), 1980. 29 Yang S J, Choi S, Odongo Ngome F O, et al. Nano Letters, 2019, 19(6), 3590. 30 Hong N, Kireev D, Zhao Q, et al. Advanced Materials, 2022, 34(3), 2106615. 31 Chandrashekar B N, Deng B, Smitha A S, et al. Advanced Materials, 2015, 27(35), 5210. 32 Lin W H, Chen T H, Chang J K, et al. ACS Nano, 2014, 8(2), 1784. 33 Leong W S, Wang H, Yeo J, et al. Nature Communications, 2019, 10(1), 867. 34 Verguts K, Coroa J, Huyghebaert C, et al. Nanoscale, 2018, 10(12), 5515. 35 Wang Y, Zheng Y, Xu X, et al. ACS Nano, 2011, 5(12), 9927. 36 Liu L, Shang W, Han C, et al. ACS Applied Materials & Interfaces, 2018, 10(8), 7289. 37 Lupina G, Kitzmann J, Costina I, et al. ACS Nano, 2015, 9(5), 4776. 38 Wong C H A, Sofer Z, Kubešová M, et al. Proceedings of the National Academy of Sciences, 2014, 111(38), 13774. 39 Gong C, Floresca H C, Hinojos D, et al. The Journal of Physical Chemistry C, 2013, 117(44), 23000. 40 Yeh C H, Teng P Y, Chiu Y C, et al. ACS Applied Materials & Interfaces, 2019, 11(6), 6336. 41 Chen Z, Qi Y, Chen X, et al. Advanced Materials, 2019, 31(9), 1803639. 42 Wei S, Hao Y, Ying Z, et al. Journal of Materials Science & Technology, 2020, 37, 71. 43 Wei N, Li Q, Cong S, et al. Journal of Materials Chemistry A, 2019, 7(9), 4813. 44 Liu B, Sun J, Liu Z. ChemNanoMat, 2020, 6(4), 483. 45 Meng X, Cheng Y, Wang P, et al. ACS Applied Materials & Interfaces, 2021, 13(4), 4835. 46 Cheng T, Liu Z, Liu Z, et al. ACS Nano, 2021, 15(4), 7399. 47 Yang J, He W, Jiang Q, et al. Carbon, 2020, 161, 123. 48 Chen Z, Chang H, Cheng T, et al. Advanced Functional Materials, 2020, 30(31), 2001483. 49 Wang H, Xue X, Jiang Q, et al. Journal of the American Chemical Society, 2019, 141(28), 11004. 50 Vishwakarma R, Zhu R, Abuelwafa A A, et al. ACS Omega, 2019, 4(6), 11263. 51 Xu S, Wang S, Chen Z, et al. Advanced Functional Materials, 2020, 30(34), 2003302. 52 Ci H, Chang H, Wang R, et al. Advanced Materials, 2019, 31(29), 1901624. 53 Ci H, Ren H, Qi Y, et al. Nano Research, 2018, 11(6), 3106. 54 Li Y, Zhou K, Ci H, et al. ChemSusChem, 2023, 16, e202300865. 55 Zhang C, Cai Y, Guo L, et al. Ceramics International, 2022, 48(15), 21789. 56 Lu M, Zhang X, Yin W, et al. European Journal of Inorganic Chemistry, 2023, 26(13), e202200779. 57 Bleu Y, Bourquard F, Michalon J Y, et al. Applied Surface Science, 2021, 555, 149492. 58 Vaari J, Lahtinen J, Hautojärvi P. Catalysis Letters, 1997, 44(1), 43. 59 Shan J, Fang S, Wang W, et al. National Science Review, 2021, 9(7), nwab169. 60 Li X, Cai W, An J, et al. Science, 2009, 324(5932), 1312. 61 Wang J, Zeng M, Tan L, et al. Scientific Reports, 2013, 3(1), 2670. 62 Ding G, Zhu Y, Wang S, et al. Carbon, 2013, 53, 321. 63 Oden L L, Gokcen N A. Metallurgical Transactions B, 1993, 24(1), 53. 64 Naghdi S, Rhee K Y, Park S J. Thin Solid Films, 2018, 657, 55. 65 Lee J H, Lee E K, Joo W J, et al. Science, 2014, 344(6181), 286. 66 Arnoult W J, Mclellan R B. Scripta Metallurgica, 1972, 6(10), 1013. 67 Gao L, Ren W, Xu H, et al. Nature Communications, 2012, 3(1), 699. 68 Yu Q, Lian J, Siriponglert S, et al. Applied Physics Letters, 2008, 93(11), 113103. 69 Sun J, Nam Y, Lindvall N, et al. Applied Physics Letters, 2014, 104(15), 152107. 70 Zheng M, Takei K, Hsia B, et al. Applied Physics Letters, 2010, 96(6), 063110. 71 Kosaka M, Takano S, Hasegawa K, et al. Carbon, 2015, 82, 254. 72 Coraux J, N‘Diaye A T, Busse C, et al. Nano Letters, 2008, 8(2), 565. 73 Li X, Magnuson C W, Venugopal A, et al. Journal of the American Chemical Society, 2011, 133(9), 2816. 74 Gottardi S, Müller K, Bignardi L, et al. Nano Letters, 2015, 15(2), 917. 75 Nguyen P, Behura S K, Seacrist M R, et al. ACS Applied Materials & Interfaces, 2018, 10(31), 26517. 76 Yang G, Kim H Y, Jang S, et al. ACS Applied Materials & Interfaces, 2016, 8(40), 27115. 77 Shin H J, Choi W M, Yoon S M, et al. Advanced Materials, 2011, 23(38), 4392. 78 Zhuo Q Q, Wang Q, Zhang Y P, et al. ACS Nano, 2015, 9(1), 594. 79 Moreno-López J C, Fedi F, Argentero G, et al. The Journal of Physical Chemistry C, 2020, 124(40), 22150. 80 Emre Ayhan M, Kalita G, Papon R, et al. Materials Letters, 2014, 129, 76. 81 Wang G, Zhang M, Zhu Y, et al. Scientific Reports, 2013, 3(1), 2465. 82 Wang Z, Xue Z, Zhang M, et al. Small, 2017, 13(28), 1700929. 83 Li J, Zheng P, Dong L, et al. IEEE Sensors Journal, 2021, 21(4), 5164. 84 Han Y, Park B J, Eom J H, et al. Advanced Science, 2021, 8(7), 2003697. 85 Lee C S, Shin K W, Song H J, et al. Advanced Electronic Materials, 2018, 4(6), 1700624. 86 Li H, Shi D, Guo P, et al. Materials Letters, 2020, 278, 128468. 87 Zhao Y, Wang X, Fu E, et al. Carbon, 2018, 139, 732. 88 Machac P, Pajtai J. Journal of Electrical Engineering, 2018, 69(3), 239. 89 Dai C Y, Wang W C, Tseng C A, et al. The Journal of Physical Chemistry C, 2020, 124(42), 23094. 90 Ding F C, Dai C Y, Yao C L, et al. Chemistry of Materials, 2022, 34(12), 5471. 91 Dong Y, Guo S, Mao H, et al. ACS Applied Electronic Materials, 2020, 2(1), 238. 92 Xiao Z, Williams L, Kisslinger K, et al. Nanotechnology, 2020, 31(48), 485203. 93 Tiwari R N, Tripathi M, Yoshimura M, et al. Materials Research Bulletin, 2018, 107, 147. 94 Takami T, Seino R, Yamazaki K, et al. Journal of Physics D:Applied Physics, 2014, 47(9), 094015. 95 Chen Y, Jiang K, Zang H, et al. Carbon, 2021, 175, 155. 96 Kim K J, Cho S Y, Kim H M, et al. Journal of Vacuum Science & Technology B, 2018, 36(2), 021802. 97 Fujita J I, Hiyama T, Hirukawa A, et al. Scientific Reports, 2017, 7(1), 12371. 98 Zhang P, Liu X, Fang X, et al. Journal of Materials Science, 2020, 55(7), 2787. 99 Yang J, Jiang Q, Chen Z, et al. Diamond and Related Materials, 2019, 91, 112. 100 Zhu H, Shi Z, Zhang C, et al. Applied Surface Science, 2022, 576, 151806. 101 Dong Y, Xie Y, Xu C, et al. APL Materials, 2018, 6(2), 026802. 102 Kaplas T, Svirko Y. Carbon, 2014, 70, 273. 103 Teng P Y, Lu C C, Akiyama-Hasegawa K, et al. Nano Letters, 2012, 12(3), 1379. 104 Shin J H, Kim S H, Kwon S S, et al. Carbon, 2018, 129, 785. 105 Kim H, Song I, Park C, et al. ACS Nano, 2013, 7(8), 6575. 106 Song I, Park Y, Cho H, et al. Angewandte Chemie International Edition, 2018, 57(47), 15374. 107 Murakami K, Tanaka S, Hirukawa A, et al. Applied Physics Letters, 2015, 106(9), 093112. 108 Tan L, Zeng M, Wu Q, et al. Small, 2015, 11(15), 1840. 109 Zhao Y, Li Y, Chen Y, et al. Nano Research, 2021, 14(5), 1280. 110 Han S, Yang F, Liu L, et al. Journal of Materials Science & Technology, 2017, 33(8), 800. 111 Li Y, Zhao Y, Chen Y, et al. Applied Surface Science, 2020, 529, 147082. 112 Sun Z, Yan Z, Yao J, et al. Nature, 2010, 468(7323), 549. 113 Lee E, Lee H C, Jo S B, et al. Advanced Functional Materials, 2016, 26(4), 562. 114 Lee E, Lee S G, Lee H C, et al. Advanced Materials, 2018, 30(15), 1706569. 115 Baek J, Kim J, Kim J, et al. Carbon, 2019, 143, 294. 116 Baah M, Obraztsov P, Paddubskaya A, et al. ACS Applied Materials & Interfaces, 2020, 12(5), 6226. 117 Li Q, Zhao Z, Yan B, et al. Advanced Materials, 2017, 29(32), 1701325. 118 Nakagawa K, Takahashi H, Shimura Y, et al. RSC Advances, 2019, 9(65), 37906. 119 Li J, Chen M, Samad A, et al. Nature Materials, 2022, 21(7), 740. 120 Pezone R, Baglioni G, Sarro P M, et al. ACS Applied Materials & Interfaces, 2022, 14(18), 21705. 121 Karankova S, Kovalchuk O, Lee S, et al. Applied Surface Science, 2023, 611, 155641. 122 Levendorf M P, Ruiz-Vargas C S, Garg S, et al. Nano Letters, 2009, 9(12), 4479. 123 Yan Z, Peng Z, Sun Z, et al. ACS Nano, 2011, 5(10), 8187. 124 Su C Y, Lu A Y, Wu C Y, et al. Nano Letters, 2011, 11(9), 3612. 125 Kwak J, Chu J H, Choi J K, et al. Nature Communications, 2012, 3(1), 645. 126 Kato T, Hatakeyama R. ACS Nano, 2012, 6(10), 8508. 127 Chen Y Z, Medina H, Lin H C, et al. Nanoscale, 2015, 7(5), 1678. 128 Wu Z, Guo Y, Guo Y, et al. Nanoscale, 2016, 8(5), 2594. 129 Dong Y, Xie Y, Xu C, et al. Nanotechnology, 2018, 29(36), 365301. 130 Park B J, Choi J S, Eom J H, et al. ACS Nano, 2018, 12(2), 2008. 131 Zhou L, Wei S, Ge C, et al. Nanomaterials, 2019, 9(7), 964. 132 Zhang K, John Hart A. Applied Surface Science, 2022, 602, 154367.