Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 20100198-14    https://doi.org/10.11896/cldb.20100198
  无机非金属及其复合材料 |
挥发性有机污染物光催化降解催化剂的研究进展
王紫莎1, 刘俊2,3,*, 刘晓庆1,2,*
1 中北大学环境与安全工程学院,太原 030051
2 清华大学环境学院,北京 100084
3 太原理工大学化学化工学院,太原 030024
Photocatalytic Degradation of Volatile Organic Pollutants: Advances in Catalysts
WANG Zisha1, LIU Jun2,3,*, LIU Xiaoqing1,2,*
1 School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
2 School of Environmental, Tsinghua University, Beijing 100084, China
3 School of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024,China
下载:  全 文 ( PDF ) ( 9181KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着工业的发展,挥发性有机污染物(VOCs)的治理迫在眉睫。在众多消除VOCs的方法中,光催化技术一直备受关注,它能够将VOCs催化氧化生成二氧化碳(CO2)和水(H2O)等无污染产物,不会产生二次污染。但光催化剂存在电导率低、过电位高、光诱导电荷高复合以及带隙不匹配等缺点,从而抑制了光催化性能的提升,进而限制了其实际应用。因此,提高光催化剂的催化活性和选择性,并且清楚了解光催化机理至关重要。目前文献报道中光催化剂催化性能提升的方法包括掺杂、染料敏化、贵金属负载、半导体复合等,不同的方法实现了能带结构调控、缺陷调控、形貌调控等,旨在增强半导体中光生载流子的流动能力以及增加可见光吸收,进而提升光催化性能。本文将文献报道的光催化剂分类,从贵金属催化剂、非贵金属催化剂、非金属催化剂以及金属有机框架(MOFs)催化剂出发进行综述,分别论述了国内外不同种类催化剂去除VOCs的研究进展。不同种类光催化剂的研究进展为开发高效光催化剂奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王紫莎
刘俊
刘晓庆
关键词:  光催化  挥发性有机污染物(VOCs)  金属催化剂  非金属催化剂  金属有机框架(MOFs)    
Abstract: The increasing concentration of volatile organic pollutants (VOCs) in the atmosphere caused mainly by industrial activities and their threat to human development have attracted wide attention. In many methods to eliminate VOCs, photocatalytic technology is regarded as a robust method to solve environmental pollution owing to its green, safe, efficient and utilization of sunlight. However, catalyst possesses a series of limitations, such as the inborn deficiency in visible light absorption, poor conductivity, high overpotential and fast recombination of electrons and holes, which greatly limits their further applications. Therefore, various strategies have been proposed to improve the photocatalytic activity and selectivity, such as the doping of metal and nonmetal, dye sensitization, adjusting the crystal faces, the formation of heterojunctions with other semiconductors and so on. This article summarizes the classification of photocatalysts reported in the literature, starting from precious metal catalysts, non-precious metal catalysts, non-metal catalysts and metal organic framework (MOFs) catalysts, and discusses the research progress of different types of catalysts at home and abroad to remove VOCs. The research progress of different kinds of photocatalysts lays the foundation for the development of high-efficiency photocatalysts.
Key words:  photocatalysis    volatile organic compounds    metal catalyst    non-metal catalyst    metal-organic frameworks
发布日期:  2023-02-08
ZTFLH:  X511  
通讯作者:  *刘俊,太原理工大学化学化工学院讲师。2010年7月毕业于忻州师范学院,取得学士学位。2017年7月毕业于太原理工大学化学化工学院,取得博士学位(硕博连读)。清华大学博士后。主要研究方向为煤的清洁高效利用技术、烟气脱硫脱硝催化剂的开发与应用和VOCs的催化氧化技术。在Applied Surface Science和Fuel Processing Technology等国际著名期刊中发表SCI论文10余篇。
刘晓庆,中北大学环境与安全工程学院副教授、硕士研究生导师。2010年7月毕业于忻州师范学院,取得学士学位。2015年7月毕业于内蒙古大学化学化工学院,取得博士学位(硕博连读)。2019年进入清华大学环境学院进行博士后研究工作。主要从事光解水制氢、光催化去除环境中污染物、理论计算、固定源烟气脱硫脱硝的研究工作。主持国家自然科学基金1项。发表SCI收录论文10余篇,包括Journal of Hazardous Materials和Journal of Alloys and Compounds等。申请发明专利2项。   
作者简介:  王紫莎,2018年6月毕业于哈尔滨师范大学,获得理学学士学位。现为中北大学环境与安全工程学院硕士研究生,在刘晓庆副教授的指导下进行研究。目前主要研究领域为光催化去除VOCs和光催化CO2还原。
引用本文:    
王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
WANG Zisha, LIU Jun, LIU Xiaoqing. Photocatalytic Degradation of Volatile Organic Pollutants: Advances in Catalysts. Materials Reports, 2023, 37(2): 20100198-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100198  或          http://www.mater-rep.com/CN/Y2023/V37/I2/20100198
1 Li J J, Zhang M, Cai S C, et al. Environmental Engineering, 2020, 38(1), 13(in Chinese).
李娟娟, 张梦, 蔡松财, 等. 环境工程, 2020, 38(1), 13.
2 Cao H S, Zhang R C, Zhu C J, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(11), 3623(in Chinese).
曹昊苏, 张荣成, 朱长俊, 等. 硅酸盐通报, 2018, 37(11), 3623.
3 Zhang Y, Tang Z R, Fu X, et al. Applied Catalysis B-Environmental, 2011, 106 (3-4), 445.
4 Zhou H, Wen Z, Liu J, et al. Applied Catalysis B-Environmental, 2019, 242, 76.
5 Gao W, Zhang X, Su X, et al. Chemical Engineering Journal, 2018, 346, 77.
6 Fiorenza R, Bellardita M, Palmisano L, et al. Journal of Molecular Catalysis A: Chemical, 2016, 415, 56.
7 Zhang Y, Park S J. Journal of Catalysis, 2017, 355, 1.
8 Cui Z K, Mi L W, Fa W J, et al. Chinese Journal of Materials Research, 2013, 27 (6), 583(in Chinese).
崔占奎, 米立伟, 法文君, 等. 材料研究学报, 2013, 27 (6), 583.
9 Weon S, Kim J, Choi W, et al. Applied Catalysis B: Environmental, 2018, 220, 1.
10 Xu T Z, Zheng H, Zhang P Y. Journal of Hazardous Materials, 2020, 388, 121746.
11 Zhang S, Pu W, Chen A, et al. Journal of Hazardous Materials, 2020, 384, 121478.
12 Du H, Zou Y, Zhao Z. Chemical Enterprise Management, 2019(13), 117(in Chinese).
杜欢, 邹渝, 赵忠. 化工管理, 2019(13), 117.
13 Šuligoj A, Štangar U L, Ristić A, et al. Applied Catalysis B: Environmental, 2016, 184, 119.
14 Xu L L. Photocatalytic degradation of gaseous benzene over pyrite supported bismuth compounds. Master's Thesis, Hefei University of Technology, China, 2019(in Chinese).
徐良龙. 黄铁矿负载铋系化合物光催化降解气态苯. 硕士学位论文, 合肥工业大学, 2019.
15 Zhu C J, Liu Y Q, Cao H S, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 327.
16 Zhang M J. Photocatalytic degradation of gaseous benzene over palygorskite supported bismuthate. Master's Thesis, Hefei University of Technology, China, 2019(in Chinese).
张梦洁. 凹凸棒石负载铋酸盐光催化降解气态苯. 硕士学位论文, 合肥工业大学, 2019.
17 Cheng Y, Xue G, Zhang X, et al. New Journal of Chemistry, 2018, 42 (11), 9252.
18 Wang L S, Xu X X, Wang Y, et al. Inorganic Chemistry Frontiers, 2018, 5 (6), 1470.
19 Duan J, Song X, Zhao H, et al. Optical Materials, 2020, 101, 109761. 1.
20 Dao V D, Son L T, Nguyen T D, et al. Journal of Solid State Chemistry, 2019, 272, 62.
21 Zou T, Xie C S, Liu Y, et al. Journal of Alloys and Compounds, 2013, 552, 504.
22 Gu J, Hu X M, Niu Y H, et al. Applied Chemical Industry, 2019, 48(8), 1791(in Chinese).
顾洁, 胡星梦, 牛永红, 等. 应用化工, 2019, 48(8), 1791.
23 Liu J, Wang P, Qu W, et al. Applied Catalysis B: Environmental, 2019, 257, 117880.
24 Zhu G A, Jwa B, Ym C, et al. Chemical Engineering Journal, 2020, 388, 124389.
25 Noguez C. Journal of Physical Chemistry C, 2007, 111 (10), 3806.
26 Daupor H, Wongnawa S. Applied Catalysis A-General, 2014, 473, 59.
27 Liu J X, Su Y, Filot I, et al. Journal of the American Chemical Society, 2018, 140 (13), 4580.
28 Gao J, Si Z, Xu Y, et al. Journal of Physical Chemistry C, 2019, 123 (3), 1761.
29 Zhang N, Xu Y J. Chemistry of Materials, 2013, 25 (9), 1979.
30 Cybula A, Priebe J B, Pohl M M, et al. Applied Catalysis B Environmental, 2014, 152-153 (1), 202.
31 Yang J, Wang D, Han H, et al. Accounts of Chemical Research, 2013, 46(8), 1900.
32 Binsaiman M I, Brett G L, Tiruvalam R, et al. Angewandte Chemie, 2012, 51 (24), 5981.
33 Xie S H, Deng J G, Zang S M, et al. Journal of Catalysis, 2015, 322, 38.
34 Mao M, Lv H, Li Y, et al. ACS Catalysis, 2015, 6 (1), 418.
35 Qiao B, Wang A, Yang X, et al. Nature Chemistry, 2011, 3 (8), 634.
36 Ding K, Gulec A, Johnson A M, et al. Science, 2015, 350 (6257), 189.
37 Zhai Y P, Pierre D, Si R, et al. Science, 2010, 329 (5999), 1633.
38 Tian J, Li J, Wei N, et al. Ceramics International, 2016, 42, 1611.
39 Huang H, Dai Q, Wang X. Applied Catalysis B: Environmental, 2014, 158-159, 96.
40 Cao S, Fei X, Wen Y, et al. Applied Catalysis A: General, 2018, 550, 20.
41 Lao Y J, Zhu N X, Jiang X X, et al. Catalysis Science & Technology, 2018, 8 (18), 4797.
42 Yu J, Wang W, Cheng B, et al. Journal of Physical Chemistry C, 2009, 113 (16), 6743.
43 Zeng L, Lu Z, Li M H, et al. Applied Catalysis B-Environmental, 2016, 183, 308.
44 Feng Y C, Li L, Ge M, et al. ACS Applied Materials & Interfaces, 2010, 2 (11), 3134.
45 Shayegan Z, Lee C S, Haghighat F. Chemical Engineering Journal, 2018, 334, 2408.
46 Lyu J Z, Sun L N, Fu Q, et al. Chinese Journal of Environmental Engineering, 2017, 11(6), 3691(in Chinese).
吕金泽, 孙露娜, 付强, 等. 环境工程学报, 2017, 11(6), 3691.
47 Li M X, Wang L, Li X, et al. Journal of Functional Materials, 2015, 46(13), 13148(in Chinese).
李梦霞, 汪莉, 李鑫, 等. 功能材料, 2015, 46(13), 13148.
48 Bianchi C L, Gatto S, Pirola C, et al. Applied Catalysis B: Environmental, 2014, 146, 123.
49 Mclaren A, Valdes-Solis T, Li G, et al. Journal of the American Chemical Society, 2009, 131 (35), 12540.
50 Wang J, Lin T, Zeng G, et al. Applied Catalysis B: Environmental, 2018, 222, 115.
51 Wang J P, Wang Z Y, Huang H B, et al. ACS Applied Materials & Interfaces, 2012, 4 (8), 4024.
52 Zhang X, Qin J, Xue Y, et al. Scientific Reports, 2014, 4, 4596.
53 Zhang L W, Xu T G, Zhao X, et al. Applied Catalysis B: Environmental, 2010, 98 (3-4), 138.
54 Tian G H, Chen Y J, Zhou W, et al. Journal of Materials Chemisity, 2011, 21 (3), 887.
55 Tian J, Hao P, Wei N, et al. ACS Catalysis, 2015, 5 (8), 4530.
56 Qian X F, Yue D T, Tian Z Y, et al. Applied Catalysis B: Environmental, 2016, 193, 16.
57 Hu C C, Teng H. Applied Catalysis A: General, 2007, 331, 44.
58 Xia L, Zang J. Journal of Physical Chemistry C, 2009, 113(45), 19411.
59 Jo W K, Selvam N. Chemical Engineering Journal, 2017, 317, 913.
60 Yu H, Lu S, Tong B, et al. Advanced Materials, 2016, 28(25), 5140.
61 Tong R F, Liu C, Xu Z K, et al. ACS Applied Materials & Interfaces, 2016, 8 (33), 21326.
62 Reddy D A, Ma R, Choi M Y, et al. Applied Surface Science, 2015, 324, 725.
63 Qiu B, Zhu Q, Du M, et al. Angewandte Chemie International Edition in English, 2017, 56 (10), 2684.
64 Wang S B, Guan B Y, Wang X, et al Journal of the American Chemical Society, 2018, 140 (45), 15145.
65 Zhao W, Liu Y, Wei Z, et al. Applied Catalysis B: Environmental, 2016, 185, 242.
66 Li X, Sun Y, Xu J, et al. Nature Energy, 2019, 4 (8), 690.
67 Tu W G, Li Y H, Zou Z G, et al. Applied Catalysis B-Environmental, 2016, 181, 16.
68 Li Y C, Huang L. Guangdong Chemical Industry, 2018, 45(10), 38(in Chinese).
李宇晨, 黄磊. 广东化工, 2018, 45(10), 38.
69 Cui X Y, Soon A, Phillips A E, et al. Journal of Magnetism and Magnetic Materials, 2012, 324 (19), 3138.
70 Chen H Y, Li X A, Zhao J Y, et al Computational and Theoretical Chemistry, 2014, 1027, 33.
71 Naoomi Y, Kohei M, Yuuki Y, et al. Chemistry of Materials, 2015, 27 (23), 8076.
72 Caskey C M, Richards R M, Ginley D S, et al Materials Horizons, 2014, 1 (4), 424.
73 Barman D, Paul S, Ghosh S, et al. ACS Applied Nano Materials, 2019, 2 (8), 5009.
74 Su S, Hisatomi T, Maeda K, et al. Journal of the American Chemical Society, 2012, 134 (49), 19993.
75 Liu G, Yang H G, Wang X W, et al. Journal of the American Chemical Society, 2009, 131 (36), 12868.
76 Zhang X, Yuan X Z, Jiang L B, et al. Chemical Engineering Journal, 2020, 390, 124475.
77 Anita S, Pankaj R, Pooja S, et al. Journal of Industrial and Engineering Chemistry, 2018, 67, 28.
78 Huang D L, Li Z H, Zeng G M, et al. Applied Catalysis B: Environmental, 2019, 240, 153.
79 Mamba G, Mishra A K. Applied Catalysis B-Environmental, 2016, 198, 347.
80 Fu J W, Yu J G, Jiang C J, et al. Advanced Energy Materials, 2018, 8 (3), 1701503.
81 Li Y, Wu X Y, Li J, et al. Applied Catalysis B: Environmental, 2018, 229, 218.
82 Lan Y L, Li Z S, Li D H, et al. Chemical Engineering Journal, 2019, 392, 123686.
83 Tomer V K, Malik R, Chaudhary V, et al. Applied Materials Today, 2019, 16, 193.
84 Zhou W M, Yan L J, Wang Y, et al. Applied Physics Letters, 2006, 89 (1), 013105.
85 Ouzzine M, Romero-Anaya A J, Lillo-Ródenas M A, et al. Carbon, 2014, 67, 104.
86 Lin W J, Xie X F, Wang X, et al. Chemical Engineering Journal, 2018, 349, 708.
87 Kovalevskiy N S, Lyulyukin M N, Selishchev D S, et al. Journal of Hazardous Materials, 2018, 358, 302.
88 Wang W, Lu C H, Ni Y, et al. Applied Catalysis B: Environmental, 2013, 129, 606.
89 An T, Chen J, Nie X, et al. ACS Applied Materials & Interfaces, 2012, 4 (11), 5988.
90 Zhang W, Li G, Liu H, et al. Environmental Science: Nano, 2019, 6 (3), 948.
91 Zheng Y, Hou X, Li Q, et al. Journal of Materials Chemistry C, 2020, 8 (5), 1803.
92 Lin Z, Xiao J, Li L, et al. Advanced Energy Materials, 2016, 6 (4), 1501865.
93 Wen M, Li G, Liu H, et al. Environmental Science: Nano, 2019, 6 (4), 1006.
94 Amarajothi D, Li Z, Hermenegildo G. Chemical Society Reviews, 2018, 47 (22), 8134.
95 Liu L L, Zhang L, Wang F, et al. Nanoscale, 2019, 11 (16), 7554.
96 Wang H, Yu T, Tan X, et al. Industrial & Engineering Chemistry Research, 2016, 55 (29), 8096.
[1] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[2] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[3] 张理元, 阳金菊, 尤佳. 以PVP为软模板构建的层状介孔TiO2及其光催化性能[J]. 材料导报, 2023, 37(4): 21080004-6.
[4] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[5] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[6] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[7] 唐飞, 蔡文宇, 陈飞, 朱晨, 刘成宝, 陈志刚. g-C3N4/过渡金属硫化物复合材料的结构设计、合成及光催化应用[J]. 材料导报, 2023, 37(1): 20100135-9.
[8] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[9] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[10] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[11] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[12] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[13] 王杨鑫, 邓强, 李成贵, 温永宇. 多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展[J]. 材料导报, 2022, 36(4): 20080197-10.
[14] 刘毅, 冯紫娟, 贾雯, 吴雪, 郑旭煦, 袁小亚. 一步溶剂热法合成Bi2S3/BiOBr多级异质结及其增强可见光光催化去除RhB的研究(英文)[J]. 材料导报, 2022, 36(24): 21030140-8.
[15] 杨振清, 项文丽, 矫玉秋, 王郭晨, 于月宁, 徐慧英, 邵长金. 均相光催化制氢体系有机染料光敏剂的研究进展[J]. 材料导报, 2022, 36(24): 20100177-15.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed